五千年(敝帚自珍)

主题:【读书笔记】IPCC究竟讲了什么?23 气候模型 -- 橡树村

共:💬88 🌺177
分页树展主题 · 全看首页 上页
/ 6
下页 末页
        • 家园 表示的是异常的情况

          这里面显示的是异常情况。比如使用了1951年到1980年的30个一月份的平均值,然后把每个年度的一月份的平均值与前面得到的进行比较,得到一个差值。图上显示的就是这个异常的数值。

          换句话说,这个数值是2005年的北极地带一月平均气温比1951年到1980年一月份的平均气温,高出的数值。这个系列里面的很多图都使用的这种表示方法,重点是突出变化,免得变化被季节等差异掩盖。

          能讲明白吗?

          全球平均温度的计算方法,在前面讲到全球气温变化的时候提到过。

      • 家园 全球平均气温怎么算?
    • 家园 【读书笔记】IPCC究竟讲了什么?26 现代气候归因 上

      橡树村:【读书笔记】IPCC究竟讲了什么?25 古气候归因

      现在已经有很多对20世纪气候的模拟。下图显示了关于全球平均气温的一些模拟情况。图里面的黑线是仪器测量的结果,黄细线和浅蓝色细线是不同的模拟的结果,粗红线和粗蓝线是这些模拟的平均值。图a表示的是同时考虑了人类活动影响和自然因素变化以后的模拟结果,图b是只考虑自然因素时候的模拟结果。可以看到图a中的模拟基本上可以反映1960年以后的全球平均温度上升趋势,而图b中只考虑自然因素的时候,能够观察到一个降温的过程,与实际观测只有明显的偏离。得到这个结果的模型考虑了前面分析过的主要的辐射强迫因素,不过有一些模型考虑的因素并不够全面,比如一些模型没有考虑炭黑气溶胶的影响,没有考虑植被分布的影响等等。尽管仍然有不确定性,但是这个图已经可以很清晰的显示,对于全球平均气温这个指标,只有在考虑了人类活动的影响之后才可以解释20世纪末期的升温。这个图还可以显示,在几十年的时间尺度上,全球平均温度明显受到外部辐射强迫的控制。此外模型也都可以反映出了火山喷发导致的变冷这一重要的气候变化。不过,在更小的时间尺度上,比如年际的尺度上,模型还不能反映出足够的变化,特别是不同模型之间在年际变化方便的不确定性非常高。

      点看全图
      外链图片需谨慎,可能会被源头改

      对20世纪全球平均气温的模拟

      不仅仅全球平均气温的变化强烈提示人类活动对全球气候造成了很大影响,对于不同地域的气候模拟也显示了同样的趋势。下图显示了地球各个区域的观察到的气温(最上一行),同时考虑人类活动和自然因素所模拟到的各个区域的气温变化(第二行),仅考虑自然因素的模拟结果(第三行)。前三行图里面,红色表示升温,蓝色表示降温。第四行显示的是不同纬度的平均变化情况,黑线是观测值,红色带是同时考虑人类活动和自然因素以后的模拟结果,蓝色带式仅考虑自然因素以后的模拟结果,范围显示90%置信区间。左边是对1901年到2005年之间的变化的模拟,右边是对1979年到2005年变化的模拟。实测结果显示除了北美东南角、北大西洋北部,非洲、南美的一些局部地区等地区,在整个20世纪全球变暖是非常普遍的。在模型仅仅使用自然因素进行模拟的时候,观察到的是除了很少几个区域以外的略微变冷趋势。而在模型同时考虑人类活动的影响以及自然因素的时候,在大尺度范围上,模型基本上可以模拟到大多数地区的温度变化趋势。在1979年到2005年期间,也可以看出考虑了人类活动因素之后的模拟要更加接近观测到的结果。虽然模型仍然有不确定性,在模拟一些区域的时候仍然有偏差,甚至得出相反的结论,说明模型的不确定性仍然有很大的改进空间,但是至少,人类影响与自然因素产生的影响已经可以很明显的分离开来。通过这些研究可以至少得出这样的结论:非常可能造成20世纪晚期全球气温上升的主要因素是人类活动影响,而不是单纯的自然因素影响。

      点看全图
      外链图片需谨慎,可能会被源头改

      各个区域的气温变化

      对于20世纪前半期的模拟,当同时考虑了人类活动因素和自然因素以后,模拟的结果看起来要比单纯考虑自然因素的略好一些,但是并不明显。究竟哪个因素起到主要作用,不同的研究者也有不同的结论,有的研究者认为这段时期太阳辐射的变化是气候变化的主导,有的认为火山爆发起到重要作用。1950到1970年间的变冷自然引起了研究者的兴趣,不过到AR4的时候还没有很清晰的结论。有的研究者发现这一时期排放的硫酸盐气溶胶相对温室气体可能起到更大的作用,大约可以解释这个时期的全球变冷趋势,另有研究者认为在模型中考虑了炭黑气溶胶的因素之后,才可能在模型中得到具有统计学意义的结果。对于一些区域的模拟显示,可以显示这些区域在20世纪中期的变冷,这里面生物质燃烧引起的炭黑气溶胶很可能起到重要作用。由于对碳黑气溶胶的重视是比较晚的事情,相关研究还很少,在AR4的时候,这个问题还没有明确的结论。

      点看全图
      外链图片需谨慎,可能会被源头改

      不同因素对气温变化的影响

      也可以专门研究单一的因素对气候的影响。上图显示的是几个模型的研究结果,红色是温室气体的影响,绿色是人类其他活动的影响,蓝色是自然因素的影响。图b是三个模型估计的20世纪,从1900年到1999年这三个不同因素对全球平均气温的影响,图c显示的是20世纪后半段,1950年到1999年这三个因素对全球平均气温的影响。这里面可以看出虽然不同模型之间对于不同因素的贡献的估计仍然有很大不确定性,但是在考虑了这些不确定性之后,温室气体的升温作用仍然很明显,20世纪后半期自然因素的降温作用非常明显,人类活动带来的升温效果也大于降温效果。

      点看全图
      外链图片需谨慎,可能会被源头改

      次大陆尺度的气温变化

      在大陆尺度,次大陆尺度上,现在模型也可以进行归因研究。上图展示的是对各个次大陆的平均气温进行的模拟,黑色线仍然是观察到的数据,红色带是考虑了人类和自然因素以后的模拟结果,蓝色带是只考虑自然因素的模拟结果。左下角的三个图分别是全球平均GLO,陆地平均LAN和海洋平均OCE。可以看到在大多数次大陆,都可以很清楚地两种不同的模拟得到的结果在20世纪后半期的区别,不过次大陆尺度展示的信号明显部大陆尺度的清晰。各个大陆的模拟见下图。有不同研究者研究了更小地理尺度范围的情况,在更小的地理尺度范围,信号的不确定性更大,有的时候能够分离人为和自然因素的区别,不过很多时候还是不能明显区分,显示了相关研究方法的不足。

      点看全图
      外链图片需谨慎,可能会被源头改

      大陆尺度的气温变化

      按照人们对气候的理解,气候变暖之后,预期会发生气候变化的极端事件。人们自然就会联想,这些极端事件与全球气候变化是否有关系。要回答这个问题还是很难的。要知道在一个稳定的气候环境里面,极端事件都是经常发生的,所以把某个极端事件归因于气候变化,是非常困难的,甚至有可能完全做不到。另外,造成一个极端事件发生的因素非常多,给评价本身也带来复杂性。2003年欧洲的夏季非常炎热,下图是对1864年到2003年瑞士夏季极端气温的统计。各个竖条是137年间的各年夏季平均温度,其中最热的是2003年,达到了22摄氏度,用红色竖条表示。其他年份里面,最冷的是1909年,最热的是1947年。可以看到2003年的夏季平均气温高出了仪器记录以来的最高值不少。拟合的高斯分布用绿色曲线表示。造成这个酷暑的可能的影响因素,包括了与晴朗天空相联系的持续高压系统,干燥的土壤导致水分蒸发带走的能量降低,使得有更多的太阳能用来加热大地等。在这些因素里面,有的可能受人类影响,有的并不受人类影响,即使是有可能受人类影响的因素,要检测出人类影响的多少也是非常困难的。不过气候模型可以对极端事件发生的可能性进行判断。比如研究者采用了只使用自然因素和同时考虑自然与人类因素的方法对欧洲夏季气候进行模拟比较,最下图展示了这个模拟结果。上图是每千年类似事件发生的概率,红线是考虑了人类活动影响之后的概率分布,绿线是仅考虑自然因素的概率分布。发现考虑了人类活动的影响之后,欧洲出现2003年酷暑这样的气候风险增加了一倍以上。

      点看全图
      外链图片需谨慎,可能会被源头改

      瑞士夏季的平均温度分布

      点看全图
      外链图片需谨慎,可能会被源头改

      欧洲夏季酷暑发生的频率分析

      其他极端事件,比如晚春,霜冻,极端雨量等等,也可以使用类似的研究方法。不过在进行相关研究的时候需要非常小心。

      橡树村:【读书笔记】IPCC究竟讲了什么?27 现代气候归因 下

      关键词(Tags): #气候变化#IPCC#归因

      本帖一共被 3 帖 引用 (帖内工具实现)
    • 家园 【读书笔记】IPCC究竟讲了什么?25 古气候归因

      橡树村:【读书笔记】IPCC究竟讲了什么?24 归因方法

      前面介绍过,在气候确切没有受到人类活动干扰的时候,地球也经历了大幅度的气候变化。这些变化很显然只能归因为自然原因,这就提供了人们了解自然因素对气候影响的机会。了解这些时期的自然因素的变化情况以及相应的气候变化,对于人们理解气候本身的行为有很大帮助。与人们对当前气候的了解相比,这些古气候信息一般覆盖的时间比较长,有充分的时间展示各种气候反馈机制。当然,了解这些古气候的特征和变化原因、程度都有困难,大多数时候只能使用各种代用资料来确认各种变化特征,这些在前面已经有了描述。

      有三个时期的古气候变化资料相对充分,各有特点,引起了研究者的兴趣。最遥远的是距今2.1万年的最后一次冰盛期,这个时期是最后一次冰川期里面冰川覆盖最广的时候,气温要明显低于现在,也更加干旱,一些代用资料显示最后一次冰期的时候热带海洋温度要比目前低2摄氏度,南北半球的冻土覆盖范围与现在相比也更加接近赤道。已经有人使用用来分析20世纪,21世纪气候变化的模型对这两个时期的气候进行分析。使用AOGCM气候模型对这个时期的模拟,发现当时全球平均温度比当代要低3.5到5.2摄氏度,只有一个模型模拟到了10摄氏度的温度差别,与之前使用PIMM模型的结果有一致性。所有的模型都表现出了比目前要弱的大气水循环,包括海洋蒸发量降低,大陆尺度的干旱。模拟到了这个时期热带地区的低温,也模拟了南大洋盐度更高温度更低的海水。与现代的气候比较,大气中温室气体浓度的差异贡献了这些气候差异的一半。不过模型在模拟北大西洋环流方面还有很大不确定性。不过基本上可以说,虽然仍然存在很大的不确定性,对于最后冰盛期的模拟基本上可以抓住当时的主要气候特点,同时模型自身的演变也展示使用根据最新的研究结果建立模型可以更好地模拟当时的气候状况。

      研究的第二个时期是全新世中期,距今6000年。全新世中期的气候特点是北半球夏季的气温比当代明显要高,具体表现在温带森林的分布更加靠北,目前干旱的非洲萨赫勒地区在当时也非常潮湿,降雨充沛,热带地区的植被覆盖也更加茂盛。使用AOGCM模型对这个时期气候进行模拟,同时考虑大气模式以及海洋的反馈,显示了热带地区具有一个季节性的0.5-0.7摄氏度幅度的震荡,以及相对应的海水浅层温度1-2的季节震荡,这些震荡对印度和非洲的季风都带来很大影响。考虑了海洋的反馈之后,对于西非地区降雨的模拟与重建的数据吻合,不过对印度和西南亚的模拟仍有问题。对全新世中期的气候模拟显示植被变化很可能触发了大气水循环的变化,萨赫勒地区的潮湿环境增强了海洋的反馈。在中高纬度,植被和海洋的反馈导致春秋两季增高0.8摄氏度,不过模型很可能过渡估计了欧亚大陆的干旱,影响植被反馈的可靠程度。对于全新世中期的ENSO的重建和模拟显示当时的ENSO要弱于现代。模拟到全新世中期北半球夏季阳光辐射比现代要强,导致太平洋西部增温高于东部,增强了信风的强度,对ENSO有一定的抑制作用。使用不同的技术、原理构建的模型得到的模拟结果与代用数据之间都可以实现定性吻合。模拟全新世中期萨哈拉的降雨情况几乎成了检验模型模拟大气海洋耦合能力的一个指标。

      前面讲到的两个时期,自然辐射,实际上主要就是太阳的辐射情况,与现代都有较大差别。模型对其模拟较好,可以说明模型对于太阳辐射变化导致的气候变化的模拟能力。在研究者关注的第三个时期,也就是最近千年的气候变化,自然因素的变化就不这么明显的。前面介绍过对这段时期气温情况的重建,相关研究已经很丰富,也导致了很大的不确定性,不过基本上勾勒出了两个重要的气候变化,一个是可能的中世纪时期的相对温暖,一个是17世纪较寒冷的气候。不过在年代甚至世纪的尺度范围上,不确定性仍然足够掩盖具体的气候变化。这些不确定性来源于各个研究者使用的不同的代用资料以及重建方法。尽管如此,基本上可以认定在50年平均的尺度上,20世纪后半叶非常可能是1300年以来最温暖的时期,也非常可能是最近500年以来最温暖的时期。对于最近千年的模拟也已经有了很多工作,利用现代资料建立的模型,使用对太阳辐射、火山爆发、温室气体,地表变化等外部辐射强迫的不同重建,对古代气候进行模拟。虽然使用方法的不同导致了重建的辐射强迫有所区别,各个模型自身也有差异,导致各个模型结果之间存在差异,不过在描述北半球平均温度的时候,不同的模拟还是表现出了一致性。比如模拟结果一般都显示出了1675年到1715年之间的变冷,并认定其是对自然辐射强迫变化的响应,与观测结果吻合。由于对外部强迫因素都是相对独立的,这些模拟结果表现出的广泛的一致性可以增加对重建可靠程度的信心,也增加了对于外部因素的作用的理解方面的信心。

      点看全图
      外链图片需谨慎,可能会被源头改

      最近千年的主要火山喷发大都有记载,所以研究最近千年的古气候状况,对了解火山对气候的影响有重要作用。火山喷发后,会带来半球尺度甚至全球尺度的降温,然后是数年时间的逐渐恢复。在模拟火山喷发后的气候的时候,这些现象都可以观察到,模拟的结果也与代用资料相符合。上图显示的是对最近700年的北半球平均气温的重建,以及辐射强迫的重建。上图是北半球几组重建的平均气温,蓝灰色的Esper数据是北纬30到90度陆地平均气温,黄色的CH-blend与红色的CH-long数据是北纬30到90度的平均气温,紫色的Moberg数据是北纬0-90度的平均气温,数据仅到1925年。绿色的是仪器测量的数据,灰色的EMB是一个模型的模拟结果。下图是重建的辐射强迫,带有浅蓝色带的蓝色线显示的是火山的辐射强迫,绿色显示的是太阳辐射的辐射强迫,实线和虚线表示不同的研究者的重建结果,红色实线与黄色带表示人类活动带来的温室气体和气溶胶的影响,实线、虚线、点线表示不同的数据来源。这里面,可以找到一个很强烈的火山影响的信号,在20世纪末期,温室气体的信号也非常强烈。太阳辐射的影响的不确定性仍然很高,由于太阳本身存在年代际周期,同时还存在时间更长的周期,分析太阳辐射的变化就非常困难,同时温室气体还会对太阳辐射的空间分布产生影响,增加问题的复杂性。在全球范围内,在最近千年的时间范围,太阳辐射变化的影响仍然比较难被分辨出来。太阳辐射的变化有可能导致了1675到1715年的冷期,有模型能够显示这样的结果。但是,也有一些模型认为火山喷发很可能是造成这一时期气候变冷的主要原因。这方面,模型之间还缺乏一致性。模型还可以模拟ENSO。对于ENSO的模拟表示在1675年到1715年见,ENSO的频率和强度与仪器测量时代相当,甚至还有可以与1997-1998年度强烈的ENSO强度相当的事件。不过在12到14世纪,ENSO的活动就很少,相对应的是这一段时期北太平洋较冷,中北美洲干旱。模型研究发现ENSO的频率不必然与全球平均温度或者热带太平洋温度有联系,另有模型显示在热带火山喷发后的数年,会出现ENSO的异常。这样,当把太阳与火山因素共同考虑后,模拟的结果就会有所改善。不过这些关系在AR4的时候仍然是很早期的工作,还很难得出确切的结论。

      其他可以影响气候的因素还有地表植被覆盖变化。人类的农业活动、对森林的砍伐都大面积的改变了地表的植被分布,影响了陆地上的碳储存,并影响地表的反照。模拟到当使用农业化之前的植被替代现代的植被以后,北美和欧亚大陆的主要农业区有可能在冬春两季要比现在冷1-2摄氏度。不过模型显示植被变化本身在半球和全球尺度带来的直接影响较小。有模型显示1860年以来的植被变化在全球范围仅带来-0.02摄氏度的变化,与1700年比较,变化也不超过-0.1摄氏度,在20世纪,变化不超过-0.05摄氏度。这么小的影响是很难检测的。另外一个重要的因素就是海洋。深海具有庞大的热容,使得海洋对外部因素变化的影响很慢,并带有可以分辨得出的因素。AR4时模型已经可以解释14到15世纪南大洋的变暖。

      总的来说,使用模拟现代气候现象的模型在大尺度上可以比较好地模拟古代气候变化,与重建资料吻合。由于使用了不同来源的资料,不确定性不大可能导致温度重建与强迫重建之间导致虚假的一致性。可以说,利用根据现在资料建造的模型对于古代气候模拟的结果,增强了人们对模型的信心。

      橡树村:【读书笔记】IPCC究竟讲了什么?26 现代气候归因 上

      关键词(Tags): #气候变化#IPCC#归因

      本帖一共被 3 帖 引用 (帖内工具实现)
    • 家园 【读书笔记】IPCC究竟讲了什么?24 归因方法

      橡树村:【读书笔记】IPCC究竟讲了什么?23 气候模型

      研究气候变化的原因,把气候变化与所观察到的外部因素联系起来的工作,叫做归因。要说明两个事物之间的因果关系,不能简单地看两者分别的变化趋势,一定程度的可信度是必须的,这个可信程度直接关系到归因的可靠性。进行归因研究的时候,最好要有控制条件下的气候系统的实验数据,这样才可以实现确凿无疑的归因。很可惜,基本上没有办法实现这个条件。于是就只能用其他方法替代。在实践上,确定人类对气候的影响,使用的方法,是考察所观测到的气候变化,是与考虑了人类行为与自然行为两个因素之后所估计的变化相一致呢,还是与其他的,扣除了某些重要的影响因素以后的解释更相符合。要建立这样的一致性,就需要估计某个可能的原因所引起的变化,然后与实际的变化进行比较,看两者之间在统计学意义上是否一致。归因研究的另一个方面,是判断一个特定的外部原因是否与其他的原因相比对某个现象起到更加重要的作用,判定其是否可能是主要的影响因素。

      最近二十年,人们对气候变化的原因的研究,发展也是很快的。由于相关研究开展的有限,在1990年IPCC发布第一次报告FAR里面,能够认定的人类对气候产生影响的直接证据还非常有限。到了1996年第二次报告SAR的时候,研究这就已经发现了可以辨别的人类活动对气候的影响,但是这仅仅是一个定性研究,当时的研究水平还达不到定量的水平,自然也就无法与自然因素进行可靠比较。到2001年TAR的时候,有关人类活动对气候影响的相关证据已经越来越多,随着相关研究方法的发展,已经有了对人类对气候的影响做定量分析的尝试。也就是在这个时候开始,研究人员才有可能对不同的强迫因素的影响进行单独研究,判断哪个因素是可能的关键因素。对于单独的气候现象,也有可能来分析人类活动是不是造成了影响,什么程度的影响,是否是主要因素。在这些技术进步之下,TAR给出的结论,是“在考虑了新的证据,考虑了其余的不确定性的基础上,绝大多数的在20世纪的最后50年所观测到的变暖现象,可能是温室气体浓度增加导致的。”

      点看全图
      外链图片需谨慎,可能会被源头改

      辐射强迫

      辐射强迫是影响气候变化的外部因素。AR4研究的辐射强迫,是各个因素与1750年或者说工业化之前相比的变化,用来分析工业化以来的各种影响气候因素的变化情况。这里面,既有单纯的自然的因素,也有人类活动造成的影响。总结一下,人类活动所造成的影响的综合,是+1.6W/m2的强迫,变暖方向,如果取90%的置信区间,是+0.6到+2.4 W/m2之间。虽然这个数字的覆盖范围仍然很大,但是已经可以说,在这段历史时期里面,非常可能人类活动已经对全球气候施加了一个不可忽视的影响。这里面,变暖方向的影响主要来自温室气体,几种温室气体综合贡献了+2.9+-0.3W/m2。由于对温室气体的辐射强迫估算有比较充分的数据支撑,这个数字的不确定性较好。人类活动带来的变冷方面的影响主要来自气溶胶,这方面的了解承认仍然有限,AR4的估计是-1.3W/m2,90%的置信范围是-2.2W/m2到-0.5W/m2,变化区间很大。而与此同时,观察到的太阳辐射变化带来的辐射强迫,仅有+0.12W/m2,90%置信区间是+0.06W/m2到+0.3 W/m2,这个数值大大低于TAR时候的估计。此外,另外一个对气候产生影响的自然因素,火山喷发,基本上会带来变冷方向的辐射强迫,具体数值无法估计。总的来说,在这一段历史时间里面,自然因素对气候产生的变暖方向的影响,与人类活动产生的同样的影响比起来,是要小的。不过各个单独的辐射强迫之间是不能直接进行加减的,不同因素但是同样数值的辐射强迫,对气候也会有不同程度的影响,单纯地将各个因素的影响加起来,也并不一定就可以得到综合影响。这方面还是比较复杂的。

      点看全图
      外链图片需谨慎,可能会被源头改

      辐射强迫的空间分布

      辐射强迫是有立体分布的,同一个辐射因素,由于其产生的机理不同,在不同的纬度、海拔,都会有不同的辐射强迫,一些因素在不同的时间、季节也有不同的辐射表现,所以辐射强迫存在一个空间和时间的分布。这个空间和时间的分布就会导致不同的辐射特征,也对研究者分辨不同辐射因素的影响提供了方便。对于单独的辐射因素的空间分布已经有了研究,可以见上面的图。这些图显示的是不同的纬度和大气高度几个主要辐射强迫因素的强迫分布情况。A图是太阳辐射的空间分布,B图是火山喷发造成的辐射强迫分布,这两个就是主要的自然原因的辐射强迫。可以看出来在不同的空间上,有的造成一个弱的变暖方向的辐射强迫,有的造成了一个弱的变冷方向的辐射强迫。对于太阳辐射影响来讲,在北极接近表面地区有一个很强的变暖的辐射强迫。C图是温室气体综合的辐射强迫的空间分布,可以看到这个分布与太阳和火山的辐射强迫分布还是有明显区别的。D图是对流层和平流层臭氧的变化带来的辐射强迫空间分布,E图是硫酸盐气溶胶的空间分布。最后一个F图是所有辐射强迫综合的空间分布。太阳辐射变化带来的辐射强迫具有一个很强烈的时间分布。太阳黑子活动的11年周期就是这个时间分布的强烈表现。由于在11年期间,太阳辐射的变化很大,这样,其他频率较低的变化就很容易比这个强烈的信号掩盖,增加了不确定性。其他受到时间影响的,还有火山爆发带来的辐射强迫,一般来讲火山喷发会在短时间内带来一个很大的变冷方向的辐射强迫,持续数月或者一两年,随后逐渐消失。对于人类工业活动所排放的气溶胶,也有一个时间影响问题。这些辐射强迫的时间分布也会给辐射强迫研究带来不小的不确定性。不过这些不同的辐射因素的不同的时间、空间分布特征,对于研究者把这些因素的影响区分开来也提供了方便。

      点看全图
      外链图片需谨慎,可能会被源头改

      各个不同辐射强迫的时间分布

      上图:整个大气。下图:地表

      要分析模型结果的不确定性,这些辐射强迫的不确定性自然就是首先要考虑的问题。对辐射强迫的估算有两类方法,一个是正向的,就是收集所有该因素的数据,来计算该因素所带来的影响。在计算温室气体带来的辐射强迫的时候,采用的就是这个方法,计算太阳辐射强迫、臭氧的影响等等,使用的也是这个方法。理想的状态自然是所有的因素都能这样分析,因为这种正向的方法相对准确,带来的不确定性较小。但是实际上很多数据收集困难,很多影响的物理模型仍然不清楚,所以就有了另一类估算辐射强迫的方法,反向方法。对于气溶胶的辐射强迫的估算,有很多研究都使用了反向方法,具体说就是为了实现模型的最佳拟合来估算气溶胶的辐射强迫。这个方法当然就带来更大的不确定性,也会有很多因素被涵盖其中,不好区分,在使用的时候就需要非常小心。到AR4的时候,正向和反向对气溶胶带来的辐射强迫的估算都已经有了进展,正向的结果就是前文提到的-0.5W/m2到-2.2W/m2的90%置信范围,反向的结果是-0.1W/m2到-1.7W/2,两个方法得到的结果的重合程度还是可以接受的。基本上到AR4的时候,重要的外部影响因素的不确定性都实现了定量描述,对于理解整体模型的不确定性提供了很大方便。

      很显然由于气候系统的复杂性,模型在这个研究中起到了很重要的作用。既然使用模型进行归因研究,那么就必须考察模型的不确定性,了解模型的误差范围,因为这直接关系到归因的可信度是什么样子的。在研究模型的不确定性的时候,理想状态是要了解所有参数的不确定性,并对物理过程本身有精确了解,从而推导出模型的不确定性。但是目前的水平还无法做到这一点,所以这种精确的评价模型不确定性的方法就无法使用。辐射强迫是模型本身重要的输入数据,上面讲了,辐射强迫的不确定性仍然很高,这些强迫的不确定性必然会给模型模拟结果的不确定性带来影响。这种影响AR4的时候仍然很难进行评估。但是仍然需要给模型的不确定性一个相对可信的描述,所以AR4时候采取的做法是通过对不同模型的评估、比较,从模型模拟的结果来了解模型的不确定性。在实践上,使用不同历史数据的不同模型也的确可以展示这些不确定性。由于这些不确定性的存在,以及可能的其他的导致不确定性的原因,在进行归因的时候,仍然需要进行主观的干预,由相关领域的专家来对评价的结果进行校正。AR4里面使用的校正方法,是总结使用不同的观测数据、不同辐射强度、不同分析方法、不同模型而得到的多方面的结果。比如多个研究结果的一致性的程度,与所观察得到的结果的符合程度,以及与其他各种证据的符合程度等等,甚至包括对相关不确定性的了解,是否有其他可能的解释等等,都需要综合考虑,来对某个或者某些因素对气候的影响的可能性进行判断。

      基本上可以说,AR4时候的归因研究,仍然有很大的不确定性。不过对于辐射强迫因素,基本上这个不确定性都已经可以进行定量分析,对于研究者了解不确定性给结果带来的影响提供了依据。通过对这些不确定性的分析,AR4认为已经在人类对气候影响的问题上可以得出信度比较高的结论。

      橡树村:【读书笔记】IPCC究竟讲了什么?25 古气候归因

      关键词(Tags): #气候变化#IPCC#归因

      本帖一共被 3 帖 引用 (帖内工具实现)
    • 家园 最后一张图给我两个感觉

      1. 现有的预测模型还是线性的,对于非线性气温变化的预测能力有限;

      2. 预测的误差区间还是太大,尤其是对未来十年后的预测。从这个角度看,现在讨论100年升高2度还是零点几度没有太大意义。

      另外,貌似把FAR和SAR做个平均后的预测效果比TAR还好。

      • 家园 TAR已经不是线性的了

        这个领域发展很快的。TAR开始提供的预测已经不再是线性的。

        不确定性的来源包括观测值本身的误差、波动;对一些物理过程缺乏了解;模型自身的因素。甚至连模型的误差究竟是多少都无法准确研究,目前的方法是综合多个模型的结果来看模拟值的分布,这个方法当然是不好的,不过现阶段似乎只能如此。

        总的来说不确定性还是很大的。

    • 家园 娱乐一下:我对气温的拟合

      首先找到了这张图中黑线的数据:

      点看全图

      外链图片需谨慎,可能会被源头改

      然后随便“拟合”一下

      点看全图

      外链图片需谨慎,可能会被源头改

      不管咋改,就是显示不出来,但是好像用这个链接可以看见图啊

      外链出处

      (一次点不开,多刷新一下就可以了-.-!)

      怎么样,我“拟合”出来的结果红线,1930-1960那段比第一张里的红线好不少吧?

      修改了一下,可以看见图了吧?

      可那红线分明是上证股指啊,1930-1950的全球气温咋就能拟合1999-2002的上证股指呢?想不明白……

      永远的幻想:【原创】乱弹上证指数和全球气温的联系

    • 家园 温度观测值的数据有地方下载么?

      点看全图

      外链图片需谨慎,可能会被源头改

      对这张图里的历史数据,也就是黑线很感兴趣,请问有地方下载么?

      • 家园 数据来源

        数据来源在

        Brohan, P., et al., 2006: Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.

分页树展主题 · 全看首页 上页
/ 6
下页 末页


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河