五千年(敝帚自珍)

主题:【讨论】在全黑的屋子里,你清醒着,你的眼睛会怎么动? -- jent

共:💬36 🌺70
分页树展主题 · 全看首页 上页
/ 3
下页 末页
            • 家园 眼底信息

              作视觉研究能否用眼底的信息呢?

              临床上,眼底检查用于青光眼早检。由于高眼压的缘故,视网膜厚度和视神经盘大小等会在有明显症兆之前就已经产生一些变化了。因为你提到了眼底断层扫描(oct),估计你的技术可以应用在这方面。 另外,虽然你提到"纳米级别的空间位移精度",不清楚你这技术的成像精度(或者说分辨率),如果能成像分辨率达纳米级别,视网膜上感受细胞的大小是微米级别,这么高精度的成像在科研或者临床都是很有意义的。不过我认为我是把"空间位移精度"和"成像精度"搞混了。

              另外,我还是不明白你说的 "1666Hz 的时间采样频率和纳米级别的空间位移精度"是记录单眼还是同时记录双眼时取得的。

              还有找到这个,http://www.zhang.pi.titech.ac.jp/cn/ 不知道对你有用否。 "研究内容" 下有一个 "固视眼振" ,记录精度好像只是微米级别,不是用眼底图像,而是对眼白表面毛细血管追踪,通过图像处理把眼球微小运动检测出来。

              • 家园 【讨论】继续讨论

                谢谢你的信息。我粗略看了zhang的工作,很有意思。^_^

                1666Hz 的时间采样频率和纳米级别的空间位移精度是记录单眼。准确地说是指被测试者在端坐状态下凝视某个点的时候记录下来的一只眼睛眼底的信息。目前我们的数据采集都是在5秒以内。

                纳米级别是指的运动检测精度。成像我们还只能到微米。目前最高的成像精度是2.42微米/像素。不过这个成像精度下的运动跟踪还不是很完美。把它缩小一些,也就是3.87微米/像素的时候,运动跟踪就很完美了。

                的确我们一开始的背景是高端oct。因为目前实验结果的鼓舞,我们非常想知道自己究竟对什么东西成像。在我们的实验数据中,我们可以直接清晰地从图象上看到眼底的血管,血管之外眼底的其他动态活动,以及,更神奇的是,我们还看到了血管与其它动态活动明显的分层结构 ---- 在眼底,血管是在眼底的最外层。在没有血管的情况下,既然能够高精度地tracking,那么就一定有稳定的结构在里边。而且我们也得到了稳定的结构。现在我们在探讨,我们看到的究竟是什么。

                ---- 当然,这已经不仅仅是眼睛(底)运动的tracking了。

                ---- 另外,我们的成像条件是红外光。那么,回到楼顶,我们看到的是否会不一样,如果在黑屋子来了一个或者若干个光子?真是让人感到幸福的问题啊。

                • 家园 刚看了一个侦查眼球运动来玩游戏的

                  通过侦测出人的眼球运动作为鼠标来控制软件,不知道是不是和你的这东西类似的原理。

                  • 家园 不一样。你说的是指利用眼球信息,准确地说是指

                    pupil, iris, gaze 等等眼睛信息来跟踪。

                    上个月和 Tobii 的人讨论过。他们目前提供非常棒的产品来控制人机交互。

                    我们的东西更关注眼底的信息,眼底的动态运动,眼底细胞的动态。而且从信号处理的角度来说,眼球运动更宏观一些。而眼底的动态更微观一些。

                    当然,眼球的运动必然导致眼底的血管,细胞有一个整体的运动。目前,我们可以清楚地看到这个整体与局部的分别。^_^

                • 家园 明白了,只是track眼动

                  我们看到的是否会不一样,如果在黑屋子来了一个或者若干个光子?

                  光子足够就看到微弱闪光,如此而已。 不知道你说的“是否会不一样”是和什么比较。

                  。在没有血管的情况下,既然能够高精度地tracking,那么就一定有稳定的结构在里边。而且我们也得到了稳定的结构。现在我们在探讨,我们看到的究竟是什么。

                  成像是只有眼底,还是因为field of depth足够,图像也包括了视网膜细胞。如果是后者就一点不奇怪,因为视网膜细胞排列很整齐,而且你的成像精度对视杆细胞足够了。

                  1666Hz 的时间采样频率和纳米级别的空间位移精度是记录单眼。准确地说是指被测试者在端坐状态下凝视某个点的时候记录下来的一只眼睛眼底的信息。目前我们的数据采集都是在5秒以内。

                  因为最近偶和同事可以完美地以 1666Hz 的时间采样频率和纳米级别的空间位移精度来记录人眼的移动(Saccade / Vergence)

                  如果是单眼,怎么测vergence? 根本无法分辨记录的眼动是smooth pursuit, drift,还是 vergence 的。 另外,记录的视野多大?全视野吗?

    • 家园 据说视网膜神经有雪崩式的放大反应所以可以探测到单光子

      但可能大脑有减噪回路,未必会意识到。可能不需要绝对黑暗的房间,用足够暗的房间里,左右眼对照控制就可以分析出不同出来了。

      • 家园 谢谢兄台指点。

        请问能否推荐一些文献或者group在这方面有研究的。

        多谢。

        • 家园 google 一下

          Can a Human See a Single Photon?

          The human eye is very sensitive but can we see a single photon? The answer is that the sensors in the retina can respond to a single photon. However, neural filters only allow a signal to pass to the brain to trigger a conscious response when at least about five to nine arrive within less than 100 ms. If we could consciously see single photons we would experience too much visual "noise" in very low light, so this filter is a necessary adaptation, not a weakness.

          Some people have said that single photons can be seen and quote the fact that faint flashes from radioactive materials (for example) can be seen. This is an incorrect argument. Such flashes produce a large number of photons. It is also not possible to determine sensitivity from the ability of amateur astronomers to see faint stars with the naked eye. They are limited by background light before the true limits are reached. To test visual sensitivity a more careful experiment must be performed.

          The retina at the back of the human eye has two types of receptors, known as cones and rods. The cones are responsible for colour vision, but are much less sensitive to low light than the rods. In bright light the cones are active and the iris is stopped down. This is called photopic vision. When we enter a dark room, the eyes first adapt by opening up the iris to allow more light in. Over a period of about 30 minutes, there are other chemical adaptations that make the rods become sensitive to light at about a 10,000th of the level needed for the cones to work. After this time we see much better in the dark, but we have very little colour vision. This is known as scotopic vision.

          The active substance in the rods is rhodopsin. A single photon can be absorbed by a single molecule that changes shape and chemically triggers a signal that is transmitted to the optic nerve. Vitamin A aldehyde also plays an essential role as a light-absorbing pigment. A symptom of vitamin A deficiency is night blindness because of the failure of scotopic vision.

          It is possible to test our visual sensitivity by using a very low level light source in a dark room. The experiment was first done successfully by Hecht, Schlaer and Pirenne in 1942. They concluded that the rods can respond to a single photon during scotopic vision.

          In their experiment they allowed human subjects to have 30 minutes to get used to the dark. They positioned a controlled light source 20 degrees to the left of the point on which the subject's eyes were fixed, so that the light would fall on the region of the retina with the highest concentration of rods. The light source was a disk that subtended an angle of 10 minutes of arc and emitted a faint flash of 1 millisecond to avoid too much spatial or temporal spreading of the light. The wavelength used was about 510 nm (green light). The subjects were asked to respond "yes" or "no" to say whether or not they thought they had seen a flash. The light was gradually reduced in intensity until the subjects could only guess the answer.

          They found that about 90 photons had to enter the eye for a 60% success rate in responding. Since only about 10% of photons arriving at the eye actually reach the retina, this means that about 9 photons were actually required at the receptors. Since the photons would have been spread over about 350 rods, the experimenters were able to conclude statistically that the rods must be responding to single photons, even if the subjects were not able to see such photons when they arrived too infrequently.

          In 1979 Baylor, Lamb and Yau were able to use toads' rods placed into electrodes to show directly that they respond to single photons.

          • 家园 费了老劲把这一段翻出来了,

            希望指出错误,但愿能不产生误导。还希望专业大牛们不惜举手之劳尽量为我们这些小白们打中文上来,译文如下:

            The human eye is very sensitive but can we see a single photon? The answer is that the sensors in the retina can respond to a single photon. However, neural filters only allow a signal to pass to the brain to trigger a conscious response when at least about five to nine arrive within less than 100 ms. If we could consciously see single photons we would experience too much visual "noise" in very low light, so this filter is a necessary adaptation, not a weakness.

            人类的眼睛是非常敏感的但我们真能看到单个的光子吗?答案是视网膜上的感知器可以对单个的光子做出反应。但是,只有当短于100毫秒的时间区间内有至少大约五到九个光子到达时,神经上的过滤器才会允许一个信号传往大脑并触发意识层面的反应。如果我们的意识能够觉察单个的光子,我们在低光照环境中就会看到太多的光学“噪声”,所以这个过滤器是必要的适应,并非不够完美。

            Some people have said that single photons can be seen and quote the fact that faint flashes from radioactive materials (for example) can be seen. This is an incorrect argument. Such flashes produce a large number of photons. It is also not possible to determine sensitivity from the ability of amateur astronomers to see faint stars with the naked eye. They are limited by background light before the true limits are reached. To test visual sensitivity a more careful experiment must be performed.

            有些人引用一些事例,(例如)出自放射性材料的微弱闪光也能被看到,以此证明人可以看到单个光子,但这是一个不正确的证据,上述闪光其实会产生大量的光子。同样的,也不能用业余天文学家以裸眼看到暗弱星体的能力来确定眼睛的灵敏度,因为背景光的强度高于灵敏度的低限。因此必须进行一些更加严密的关于视觉灵敏度的测试。

            The retina at the back of the human eye has two types of receptors, known as cones and rods. The cones are responsible for colour vision, but are much less sensitive to low light than the rods. In bright light the cones are active and the iris is stopped down. This is called photopic vision. When we enter a dark room, the eyes first adapt by opening up the iris to allow more light in. Over a period of about 30 minutes, there are other chemical adaptations that make the rods become sensitive to light at about a 10,000th of the level needed for the cones to work. After this time we see much better in the dark, but we have very little colour vision. This is known as scotopic vision.

            在人类眼底的视网膜上有两种接收器,所谓锥点和柱点。锥点负责彩色图像,但在低照度下的灵敏度远低于柱点,不过在高照度下,锥点会活跃起来,而瞳孔则会收缩,这称为明视觉。而当我们进入一个黑暗的空间内时,眼睛的第一个适应行为是扩张瞳孔以接收更多的光线,然后经过大约30分钟,眼睛会完成另一个化学方面的适应行为,把锥点变成了对光的灵敏度要高上大约10000倍的柱点。在此之后,我们在黑暗中可以看得更清楚,但对于色彩的感知则大大下降,这称为暗视觉。

            The active substance in the rods is rhodopsin. A single photon can be absorbed by a single molecule that changes shape and chemically triggers a signal that is transmitted to the optic nerve. Vitamin A aldehyde also plays an essential role as a light-absorbing pigment. A symptom of vitamin A deficiency is night blindness because of the failure of scotopic vision.

            柱点中的活跃物质是视紫红质,单个光子可以被一个这种分子吸收,并改变其形状,并以化学的方式产生一个信号并传导到光感神经。醛化维A作为光吸收染料也在其中扮演了关键角色。维A缺乏引发的夜盲症就是因为暗视觉缺失。

            It is possible to test our visual sensitivity by using a very low level light source in a dark room. The experiment was first done successfully by in 1942. They concluded that the rods can respond to a single photon during scotopic vision.

            采用非常低照度的光源在黑暗空间中测定我们的视觉灵敏度是有可能实现的,而首先实现这种实验的是Hecht,Schlaer和Pirenne,时间是1942年。他们认为在暗视觉条件下柱点可以对单个的光子产生反应。

            In their experiment they allowed human subjects to have 30 minutes to get used to the dark. They positioned a controlled light source 20 degrees to the left of the point on which the subject's eyes were fixed, so that the light would fall on the region of the retina with the highest concentration of rods. The light source was a disk that subtended an angle of 10 minutes of arc and emitted a faint flash of 1 millisecond to avoid too much spatial or temporal spreading of the light. The wavelength used was about 510 nm (green light). The subjects were asked to respond "yes" or "no" to say whether or not they thought they had seen a flash. The light was gradually reduced in intensity until the subjects could only guess the answer.

            在他们的实验中,他们首先让受试者用30分钟适应黑暗的环境,然后他们将受试者的双眼固定,在其左侧放置一个20级可控的光源,这样其光线可落入视网膜中柱点密度最大的区域。上述光源是圆盘状的,占据视界10分的弧度,只发射时长1毫秒的微弱闪光,以避免光线在时间和空间上的分散。采用的波长是510纳米(绿光),当闪光过后受试者必须回答是或否以表示他认为他是否看到了闪光。逐步降低光强,直到受试者完全是在瞎猜。

            They found that about 90 photons had to enter the eye for a 60% success rate in responding. Since only about 10% of photons arriving at the eye actually reach the retina, this means that about 9 photons were actually required at the receptors. Since the photons would have been spread over about 350 rods, the experimenters were able to conclude statistically that the rods must be responding to single photons, even if the subjects were not able to see such photons when they arrived too infrequently.

            他们发现:当进入眼中的光子为90个时,受试者回答的正确率在60%,由于落入眼中的光线只有10%到达视网膜,这就意味着接收器实际要求有大约9个光子才能起作用。由于光子分布在大约350个柱点上,实验者据此认为,即使受试者当光子来得太多时无法看到它们,但从统计上说柱点必然会对单个的光子做出反应。

            In 1979 Baylor, Lamb and Yau were able to use toads' rods placed into electrodes to show directly that they respond to single photons.

            到1979年,Baylor,Lamb和Yau把蟾蜍的柱点接入电极,直接证明了柱点可以对单个的光子做出反应。

            下面是我的一点感想:

            虽然可能单个光子能被柱点看到,我觉得除了前面没落到视网膜上,后面被神经过滤器过滤掉了以外,是不是还有没落到柱点上,或没落到柱点上的正确位置的问题?请为咱这样的小白解惑。

            • 家园 可见光=可见將來, "到底會發生??事"

              thanks for 翻譯, a lot of hardwork, even just typing.

              now your question:

              "下面是我的一点感想:

              虽然可能单个光子能被柱点看到,我觉得除了前面没落到视网膜上,后面被神经过滤器过滤掉了以外,是不是还有没落到柱点上,或没落到柱点上的正确位置的问题?请为咱这样的小白解惑。"

              first of all, I have not read those articles I listed here and I have very limited knowledge in this field, I am a 小白 and the following is just my guess as a 小白:

              如果视网膜 here 是量子过程, or at least with some 量子成份, 那视网膜@this level至少不是经典物理(包括眼光学)only 可以描述解释的,你的问题很象是经典眼光学的问题.

              I know little about 经典眼光学, but I am pretty sure we don't have a 量子眼光学 at the moment, if I may guess.

              I hope others can make comments too.

              1.

              可见光的波长范围在770~350纳米之间。波长不同的电磁波,引起人眼的颜色感觉不同。770~622nm,感觉为红色;622~597nm,橙色;597~577nm,黄色;577~492nm,绿色;492~455nm,蓝靛色;455~350nm,紫色。

              相对应的,可见光的频率在3.9X10^14~8.6X10^14Hz之间。

              2.

              3.33 gigahertz = 3 330 000 000 hertz

              Instructions per second - Wikipedia, the free encyclopedia

              en.wikipedia.org/wiki/Instructions_per_second - 翻譯這個網頁

              ... usually reported in Hz, as each instruction may require several clock cycles to ... Results on a 2.4 GHz Core 2 Duo (1 CPU 2007) vary from 9.7 MWIPS using BASIC .... Intel Core i7 Extreme Edition 980X (Hex core), 147,600 MIPS at 3.33 GHz ...

              3.

              "(V) 量子心電感應"

              (Entanglement/糾纏)

              預估以現行的半導體技術

              縮小的速度,在2015左右,

              device大小達50nm以下.

              電子的波動性不可再被忽

              略…

              http://www.phys.nthu.edu.tw/~mou/teach/NTU.pdf

              4.

              PDF]

              Quantum optics: quantum, classical, and metaphysical aspects

              www.phi.kit.edu/.../Highly_Recommended_reading_Metaphysics_Q...

              File Format: PDF/Adobe Acrobat - Quick View

              by DN Klyshko - 1994 - Cited by 46 - Related articles

              Mar 7, 2012 – retina quantum efficiency with the help of such light seem to be of interest.) Let us imagine that weak light from a star is observed by the naked ...

              5.

              Stanford's quantum entanglement device brings us one step closer ...

              www.extremetech.com Computing

              Nov 19, 2012 – Researchers at Stanford University have taken another major step toward using quantum entanglement for communication, streamlining the ...

              Quantum Entanglements: Science and Pseudoscience

              www.crystalinks.com/Quantum_Entanglements.html

              Quantum entanglement says that two particles can become intertwined so that ... bunch of photons that actually hit the retina are in this bizarre quantum state.

              6.

              李嗣涔:"意念與物質交互作用之現有理論"晓兵 字3032 2013-02-08 18:19:22

              http://www.ccthere.com/alist/3808130

              "從量子力學的觀點來看,任一粒子或系統之行為均可用一波函數),(trvΨ來描述,其中rv為粒子之位置,t為時間。雖然自1926年起,物理學家就接受2),(trvΨ代表粒子在時間t出現在rv之或然率,但是波函數Ψ本身為複數,是真實世界無法測量之物理量,因此Ψ本身之物理意義一直不太確定。這似乎隱含著一個重大的秘密,由θΨΨje=,似乎有一相位空間θ存

              82

              發表於《中國人體科學》第 9 卷第 3 期(1999 年 9 月)

              在(可以稱為共軛空間或信息空間),與真實空間Ψ同時在運作,互相緊密相關,但是無法從真實的世界來測量,但是由「觀測理論」之解釋,這個空間仍可由人大腦意念來影響。「共軛空間」或「信息空間」之架構似乎有理論之基礎支持。問題仍在於宏觀之物體可以用宏觀之波函數來描述嗎?"

              ----------quoted---------

              "一毫秒(千分之一秒)

              典型照相机的最短曝光时间为一毫秒。一只家蝇每三毫秒扇一次翅膀;蜜蜂则每五毫秒扇一次。由于月亮绕地球的轨道逐渐变宽,它绕一圈所需的时间每年长两毫秒。在计算机科学中,10毫秒的间隔称为一个jiffy"

              一秒等于1000毫秒,等于10的15次方皮秒.

              10的18次方 |艾[可萨] | E

              10的15次方 |拍[它] | P

              10的12次方 |太[拉] | T

              10的 9次方 |吉[咖] | G

              10的 6次方 | 兆 | M

              10的 3次方 | 千 | k

              10的 2次方 | 百 | h

              10的 1次方 | 十 | da

              10的-1次方 | 分 | d

              10的-2次方 | 厘 | c

              10的-3次方 | 毫 | m

              10的-6次方 | 微 | μ

              10的-9次方 |纳[诺] | n

              10的-12次方 |皮[可] | p

              10的-15次方 |飞[母托] | f

              10的-18次方 |阿[托] | a

              时间单位的档案

              编辑: 李瑛

              撰文/David Labrader [崔琳琳/译 曾少立/校]

              时间的单位可以从极小到极大,下面的描述是想传达一种超大时间跨度的感受。

              一渺秒(十亿分之一秒的十亿分之一)

              科学家是用渺秒来对瞬时事件进行计时的。

              研究人员已经用稳定的高速激光产生了仅持续250渺秒的光脉冲。尽管这一时间间隔短得无法想像,但是和普朗克常数相比还是很长的。普朗克常数大约为10-43秒,被认为是可能持续的最短时间。

              一飞秒(十亿分之一秒的百万分之一)

              一个分子里的一个原子完成一次典型振动需要10到100飞秒。完成快速化学反应通常需要数百飞秒。光与视网膜上色素的相互作用(产生视觉的过程)约需200飞秒。

              一皮秒(十亿分之一秒的千分之一)

              最快晶体管的运行以皮秒计。一种高能加速器产生的罕见亚原子粒子b夸克在衰变之前可存在1皮秒。室温下水分子间氢键的平均存在时间是3皮秒。

              一纳秒(十亿分之一秒)

              光在真空中一纳秒仅传播30厘米(不足一个步长)。个人电脑的微处理器执行一道指令(如将两数相加)约需2至4纳秒。另一种罕见的亚原子粒子K介子的存在时间为12纳秒。

              一微秒(百万分之一秒)

              光在这个时间里可以传播300米,大约是3个足球场的长度,但是海平面上的声波只能传播1/3毫米。高速的商业频闪仪闪烁一次大约持续1微秒。一筒炸药在它的引信烧完之后大约24微秒开始爆炸。

              一毫秒(千分之一秒)

              典型照相机的最短曝光时间为一毫秒。一只家蝇每三毫秒扇一次翅膀;蜜蜂则每五毫秒扇一次。由于月亮绕地球的轨道逐渐变宽,它绕一圈所需的时间每年长两毫秒。在计算机科学中,10毫秒的间隔称为一个jiffy。

              十分之一秒

              寓言中常说的“一眨眼”的时间就是十分之一秒。人类的耳朵需要十分之一秒的时间来分辨发声回声。远离太阳系飞行的飞行器旅行者1号,每十分之一秒飞离太阳约两公里。蜂雀在这个时间里可以拍打7次翅膀。为A到中C定调的调音叉振动4次。

              一秒

              健康人的心跳大约持续一秒。美国人平均每一秒吃掉350块比萨饼。地球每一秒绕太阳旋转30公里,而与此同时太阳在银河系中穿行274公里。一秒钟不足以使月光到达地球(需1.3秒)。传统意义上,一秒是24分之一天的60分之一的60分之一,但是科学家给出了一个更精确的定义:铯133原子基态超精细能阶跃迁的9 192 631 770个周期所持续的时间,称为一秒。

          • 家园 太谢谢了。嗯,多了解了好多信息。^_^

            如题。

    • 家园 人眼是不会对单光子相应的

      因为人眼有光强相应阈值,单光子的光强不够,不会相应的。否则人眼就得累死。

    • 家园 人眼自己的噪声就不低吧

      这样还能检测单光子事件?

      • 家园 嗯,刚听说这个事情时我的反应也是这样。

        不过看了一些文献后觉得很有意思。

        其中的一个group就是冲着人眼在单光子条件下如何去噪声以改进单光子检测器件灵敏度而去的。

    • 家园 花!一个光子可能不足以产生信号
分页树展主题 · 全看首页 上页
/ 3
下页 末页


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河