- 近期网站停站换新具体说明
- 按以上说明时间,延期一周至网站时间26-27左右。具体实施前两天会在此提前通知具体实施时间
主题:从狭义相对论公式看当物体超光速的时候,是否是会时光倒流? -- 思想的行者
你超光速跑了一段,再降到光速以下,回头就可看见以前发生的事情一幕幕正在重演,只要影像没有淡到看不见,呵呵。
同样,完全以光速运动时也是看不见任何东西的。
狭义相对论所说的速度是线速度
线速度等于角速度乘以一个半径
问题在于你这么大的轮子,其角速度很小。
你说的轮子其实在宇宙间到处都是,例如地球的周长貌似是4万公里,地球的半径就有6000多公里,比地球半径大几十倍的天体是很多的,地球在自转,比地球大几十倍的天体自转的应该也有不少。
但超光速时,眼睛或光检测器却能追上撞击以前发出的光子,从而看到过去情形的倒带画面。由于只是影像,无法参与,所以用虚数表示过去倒放,一种数学描述。相对论关键在于相对,即是观测到的结果,实际上无论超光速或不动的坐标系,其自己的时间流逝速率还是均匀一致的,只是互相观察对方时,发现对方那里出现了怪事,对方那里的时间发生了倒流。
相对论的预测是你对面不会马上动。不管你的轮子有多硬,怎么也得等个1.3秒以上。
在人类迄今所有对物理宇宙的认知中,还没有发现过任何超距相互作用。已知的四种相互作用都通过物质传递,传递速度都不超过真空中的光速。
我们触手可及的最大物体是地球。如果日本现在大地震,地球另一端的人在30毫秒内没有任何办法得知。
“拿根31万公里长的棍子捅那一头的人。理由完全一样。”还真是一样,多谢多谢
多谢各位答疑解惑,拱手答谢,花之
量子纠缠导致的量子即时通信技术有多少团队在研究啊
小球就可以,只需要小球在旋转,旋转的线速度接近光速。
问题在于根据狭义相对论,当静止质量不为0的物体速度等于光速的时候,其质量无穷大,因而其能量也无穷大。
因此你的问题只能在静止质量为0的量子上有意义。
这个量子之间存在着一个所谓的纠缠,例如两个光子的偏振状态就存在着某种不约而同的纠缠,两个纠缠的光子,你改变一个光子的偏振状态,另一个光子的偏振状态也几乎是马上改变---最少是超光速的--中科大的团队证明这个马上发生的速度是光速的最少一万倍以上,人们正在根据这个量子纠缠的超光速特性研究量子计算机以实现即时通信。
为什么会发生这样的量子纠缠,你提的问题应该说是一个不错的问题
那应该我会比现在有名一些,在微博上,还是有一些人知道西西河的罗教主的。
薛定谔方程中出现一个i,当然不代表着一定存在虚数时间和虚数空间,这仅仅是我提出的一个猜想罢了。
至于关于狭义相对论的争议,主要是指狭义相对论与洛仑兹的以太论之间谁更符合事实,这一点,在中国科学院主办的科学网上有一些学者还在讨论这个问题。
据认为狭义相对论可以得出的公式,以太伸缩说也一样可以得到。
for the reasons said many times, I am going to write the way I have been writing, sorry for the "dark side" of it, using a lot of rough analogies to get the key & basic concepts/"model" across.
1.
德布罗意物质波 has no media or "介质" in terms of
macroscopic physics;
for classic/macroscopic waves, we normally can figure out the physics wave equations associated with them, partially by figuring out the physics of "介质" involved.
2.
德布罗意物质波 is still a 物质波
but the 物质 here is in terms of "mesoscopic and/or microscopic" physics, where "介质" is difficult to define in general, except for specific situations or applications such as "晶格/laatice viberations/晶格振动"/ phonon etc.
[PDF]
晶格振动的量子化-声子
staff.ustc.edu.cn/~zhaojin/courseware/chap10.pdf
轉為繁體網頁
引入简正坐标,用分析力学的方法重新处理晶格振动问题. 将分析力学中的哈密顿量 ..... (1)离子-离子相互作用引起的晶格振动--声子(phonon);. (1)离子-离子相互作用 ...
3
薛定谔(Schroedinger): how to model 德布罗意物质波?
1).
测不到"介质"
obviously, at his time, that was a huge challenge for humanity as a whole.
roughly speaking, his logic of guessing/modeling of 德布罗意物质波 is very logic and intuitive:
since it's hard to figure out the general "media/介质" of 德布罗意物质波, 薛定谔 starts with/or goes back to the original 色散關係 of 德布罗意物质波
2)
"测"色散關係
物质波是"概率波", and we are talking about physics, not "social science", if 测不到"介质", then how about 测 some kind of "form" related to 粒子 in terms of "动量为p=mv,能量为E"?
色散關係 is basically about the following concept
"德布罗意是把光的这个波粒二象性的事实加以推广,提出一切微观粒子都具有波动性的大胆假设,并论证了一个动量为p=mv,能量为E的自由的粒子,相当于一个波长为λ=h/p、频率为ω=E/h、沿粒子运动方向传播的平面波(h=6.6260755×10-34Js 是普朗克常量)";
dispersion relation
roughly speaking it is about relationship between 波数/波长 & 频率
4.
basic PDE modeling of wave function in general:
"回到波动方程,举个最简单的例子,平面波函数A*exp[i*(w*t+k*x)]。相信您学过傅里叶变换,理解为什么考虑平面波一般就够了。平面波函数对时间求个导数,哇塞,出来一个 i,进入虚数时空了!对空间位移求导,也能出 i,太神奇了。其实不光物理,工程也一样。随手翻开一本数字信号处理就会发现,Mama Mia!"
basically & roughly speaking,
波动方程 (such as those with "正弦波"解)对空间位移求导/微分: we are going after 波数/波长, similarly, if we do it a couple of times, we are going after pattern/ratios of 波数/波长 ;
波动方程 (such as those with "正弦波"解) 对时间求个导数/微分: we are going after
频率, & and if we do it a couple of times, we are going after the pattern/ratios of 频率;
and with all that, we are going after
色散關係 of "物质波", 方向正确?
with pattern or metrics of 色散關係 modeled and calculated, we then go to lab, play with a few atoms, such as 氢原子光谱: omg, 薛定谔=伟光正, global, at humanity level, 坐标系变换不变(:).
I had a post about 哈密顿 modeling and its apps in QM modeling of 德布罗意物质波.
5.
德布罗意物质波是"概率波":
again, roughly speaking, if in many cases, 德布罗意物质波 has no "介质"(or 介质 we can measure in the lab), then it is not really 傳播, with no 能量: in that sense, 德布罗意物质波 is a "phase wave" or travelling as 相位波 with 动量 & 概率;
here comes all the "complex numbers" related to 相位波, 超光速 etc;
"相位波"超光速 is real in terms of
"量子计算与量子逻辑门 操作上为所有可能的幺正变换,因而,对态的操作应是幺正的、 可逆的,无能量的"
6.
自旋, dirac equation, QFT, etc
as posted before about Berry相位, "相位波/field" is still 物质波/field, possibly related to 自旋 and atom (自旋 based) interactions with the global "heatbath" in terms of QFT , etc
POV is critical to 量子计算与量子逻辑门, not sure where China(or USTC) is in that area, likely very behind.
可观测量视为正算子测度,并深入探索而得到量子测量理论
7.
科学=logic+实证+預測
量子力学(& 量子场论) is the best we have ever had as a 科学, at this stage of humanity, period.
---------------------
[DOC]
3. PlaneWave-1
www.ss.ncu.edu.tw/~cjpan/wave/3.%20PlaneWave-1.doc
這就是dispersion relation(色散方程式),由dispersion relation來規範波在介質中的傳播,如果波在某介質下能傳播,就一定要滿足dispersion relation 其中k規範, ...
----
哈密顿力学表述形式长驱直入量子力学 - 西西河
www.cchere.com/article/3871187
轉為繁體網頁
2013年4月28日 - 哈密顿力学表述形式长驱直入量子力学 [ 晓兵 ] 于:2013-04-28 ... 赵凯华. (北京大学物理学院,北京l00871). PDF]. 创立量子力学的睿智才思.
-----
几何相位与量子相变| Yin Zhangqi's Blog
zqyin.wordpress.com/2007/04/26/几何相位与量子相变/
轉為繁體網頁
2007年4月26日 - Berry相位,又称为几何相位,是系统的哈密顿绝热的沿着闭合的参数回路周期性的变化时,在波函数上引入的附加相位。几何相位与系统的Hilbert ...
-----
POV, 正算子测度
本书是Springer《物理学讲义》丛书新系列第31卷。书中利用量子理论的概率结构,用运算量子物理学给出量子力学一个系统表述。书中把可观测量视为正算子测度,并深入探索而得到量子测量理论,从而应用它来解决长期存在于量子力学基础中的哲学概念,并解释其中的疑难问题,而且使许多量子力学中最新的基本实验也获得圆满分析。
量子力学研究领域的高年级大学生、研究生和科研人员;物理学的哲学家及算子测度的数学工作者。
此书为英文版!
1.
first of all, "量子纠缠与EPR佯谬" is still bothering humanity, obviously, it had bothered Einstein until his death, etc.
those are still of 微观系统 物理现象, even "global", in terms of "幺正操作", etc.
2.
罗化生:从狭义相对论公式看当物体超光速的时候,是否是会时光倒流?
in terms of macroscopic physics, that type of 时光倒流questions are meaningless, there is no 宏观物体超光速, period.
of course, you could say you mean "微观"物体超光速, but what is a "微观"物体? blabla
3.
in QM/QFT, often 微观系统 is "絕熱":therefore system is 么正, 绝热过程可逆 etc, and we have 么正算子(unitary operator), such as "量子计算与量子逻辑门 操作上为所有可能的幺正变换,因而,对态的操作应是幺正的、 可逆的,无能量的", no media (we are trying to find that workable media, obviously) involved, "超光速", etc.
and further into QFT, we have "虛光子", "off shell", many seemingly "超光速" stuff, many in the sense of 相位 field etc, which itself is still a work progress in QFT;
the concept of 相位, 么正算子(unitary operator)in qm originally started with Dirac'work.
and obviously, "物体" in QM is not "物体" as we know in terms of macroscopic physics;
4.
it is very hard to find a real physics system of "絕熱" in the macroscopic environment, and physics as an "emerging physics", "物体" is well behaved according to 狭义相对论, & largely GR as well, when "物体" emerged into macroscopic environment from microscopic environment, where "物体"超光速, "时光倒流" do "happen", but more of "mathematical physics" (for lack of better word description, we need to get into QFT for more "accurate" descriptions , etc).
it's often difficult for people to tell the difference between the macroscopic physics and microscopic physics, with many same or similar terminologies used in both field but often with totally different meanings.
and out of a particular context, even general verbal discussion of general concepts and models is difficult, if not meaningless.
yes, this is a public forum.
5.
because of non-"絕熱" properties of macroscopic environment, "量子计算与量子逻辑门 操作上为所有可能的幺正变换,因而,对态的操作应是幺正的、 可逆的,无能量的"
is still a largely a research-in-progress thing, no one knows whether it is ever possible as a real "app".
and obviously, because of non-"絕熱" properties of macroscopic environment, china is facing a struggle in terms of its "normalization" with global "heatbath", 顏色革命 etc, which is obviously a very important parameter of china modeling, for chairman X & his team, as we know.
by the way, no offense to you or anybody, just trying to clarify some basic concepts/terminologies.
---------
[PDF]
量子力学相位因子 - 物理
www.wuli.ac.cn/CN/article/downloadArticleFile.do?...
轉為繁體網頁
由 李华钟 著作 - 2001 - 被引用 10 次 - 相關文章
量子力学相位因子3. 李华钟. 中山大学高等学术研究中心及物理系广州. / 量子化对称和相位因子) ) ). 世纪物理学的主旋律0. ) ) ) 引自杨振宁在中国科学院成立.
这些都说明量子即时(我理解您所谓的即时就是瞬时,至少可以超过真空中的光速)通信是不可能的呀?您到底想说超光速通信可能还是不可能呀?
另外有哪些团队在研究量子即时通信啊?我是真心不知道。
研究量子测量,量子光学,量子纠缠,量子信息,量子计算,量子加密,量子通信的我见的多了,研究量子传态,量子通信复杂度的我也听说过,就是没见过研究量子即时通信的,更别说技术层面的了。这申请经费得多难哪。还是说有私人注资?虽然身边量子信息中心的人乌泱乌泱的,可从没听谁提过研究即时通信的团队。保险起见我还是认真上网搜了搜(我也真闲),确实没找到任何团队。您能不能在百忙中指点我一下,就一个团队就行,学校研究所名称也行,PI名字也行,代表论文也行,随便给个名儿。西太平洋大学的就算了。
不见得你就了解通过量子纠缠进行通信是不是光速通信。
你这样显摆自己认识多少人的回复是无意义回复。
不欢迎此类回复,投草一颗。