主题:【文摘】相对论通俗演义 -- 不爱吱声
第十章 宇宙学之一
(1)
爱因斯坦把他的方程写出来以后,开始考虑的一件事情是如何从他的方程得到我们生活其中的宇宙。爱因斯坦的雄才大略在这一件事情上体现得淋漓尽致。这种气质在科学家中是极其少见的,赫胥利《天演论》第一句也有过类似的气质:“赫胥黎独处一室之中,在英伦之南,背山而面野,槛外诸境,历历如在机下。乃悬想二千年前,当罗马大将恺彻未到时,此间有何景物?计惟有天造草昧……” 爱因斯坦也是这样,他要在斗室之中,通晓天地之变,阴阳之道,但他用的是数学方法做《天演论》。
广义相对论一直被誉为最美丽的理论,爱因斯坦也被认为是人类历史上最伟大的科学家,他一个人苦心孤诣地研究工作,为我们打开了认识神秘宇宙的大门。当然,与爱因斯坦的广义相对论有竞争的理论,为数也多如牛毛,排除一些地道的民间科学家的理论,这些理论之中,最重要的是班斯和迪克的标量张量理论,在他们那里,牛顿万有引力常数不再是一个常数,而是一个函数,这个想法是很自然的。函数也就是标量场,在广义相对论中,标量场神出鬼没,成就了一批又一批的文章。
广义相对论中,最基本的是时空流形M和它上面的度量 g_ab。M在没有g_ab的时候,上面是没有距离概念的,也就是没有过去和未来。M仅仅是一个微分拓扑空间,可能把它想象成一个4维的自行车内胎或者篮球皮,等等等等。M上面具有光滑的微分结构。至于它上面有多少光滑的微分结构,这个问题就过于艰深了。一般地说,在最简单的平坦Minkowski流形上,有无穷多个微分结构。这个工作是得到Fields奖的。
聪明而细心的看客马上会问,那么,M上的所有微分同胚变换是不是构成一个李群?答案是肯定的,但是,这个李群是无限维的,这有一点不象su(2)那样简单了,su(2)李群是3维的。这个问题背后有冗长的不厌其烦的计算和深刻的数学。在这里,注意力是集中的,我们要关心的是宇宙学。
但是,宇宙是有时间的,为了定义时间,抛弃热力学时间箭头抑或电磁辐射时间箭头。在相对论里,度量 g_ab的号差是Lorentz的,也就是说,把度量看成一个4乘4的矩阵,在线性代数里面,有一个惯性定理,这个定理说,在相似变换下,矩阵的正负特征值的个数是不变的。度量是Lorentz的,相当说,特征值有一个是负的,其他三个是正的,写成(-,+,+,+)。其中,负号代表时间。
是否每一个流形都可以配上一个Lorentz号差的度量?或者说存在整体定义的时间?时间作为一个矢量场整体存在,矢量场整体无奇点,指数为0.Hopf-poincare的指数定理说,指数和等于欧拉数。所以一个流形可以配上一个lorentz号差的度量,必然要求流形M的欧拉数为0。
M的拓扑结构对g_ab的限制,这样的问题连爱因斯坦也没有考虑过。粗浅地说,这样的问题就好象是一个金饭碗,但你会解决这样的问题时候,这往往意味着你已经长大成人了,可以出去讨生活了,并且在一定程度上可以自我保证衣食无忧了。
(2)
w.pauli很年轻的时候,曾经一系列介绍相对论的文章,集中为写过一本书,叫《相对论》。这本书现在已经被人淡忘,往事不要再提,人生已多风雨。我有一本他的书,每每看到这本由内而外发黄的书,1920年的Pauli研究生在油灯下笔耕不辍的情景就跃然眼帘,让人不由得想起四字镏金大字:英雄时代!
在本书中,相对论建立的1905年到1970年代霍金提出黑洞辐射,这短短的一甲子左右的光阴,我称之为“英雄时代”。这段时间中,量子力学也诞生了一大批人类精英。
特仿人民英雄纪念碑的碑文一则:
八九十年以来,在爱因斯坦理论中牺牲的英雄们永垂不朽!
三四十年来,在Hawking和penrose的奇性理论中牺牲的人民英雄们永垂不朽!
由此到廿一世纪初年,从现在起,为了理解广义相对论,争取人类精神独立和自由幸福,在历次斗争中牺牲的英雄们永垂不朽!
Geroch等在1973年曾经证明了一个定理,说的是,如果时空(M,g-ab)是整体双曲的,那么,在拓扑上必然有M=RXE,其中,E是一个3流形,是类空的。这个定理的意思是说,假如你要有一个定义良好的初值问题,那么,时空的拓扑必须要是一个RXE。其中R就是时间,用参数t表征,每一个等t面是cauchy曲。这个定理,最直白的意思,就是想要给出了唯一的时间演化,“已知现在的情况,能够唯一确定未来。必须要有一个拓扑限制”,在这个意义上,这个定理对算命先生极其有利。但是可惜的是算命先生不是谦虚好学之人,多数不知道偏微分方程理论背后的巨大天机。
在宇宙学上,人们往往不考虑违背Geroch1973年的这个定理的奇异的宇宙,例如拓扑为T4或者S4。因为人们相信,在宇宙之中,存在良好的因果关系,可以很好地处理初值问题。
(3)
哥白尼原理,也叫宇宙学原理,它说:我们的宇宙,在空间上是均匀的,各向同性的。这一个原理是有一定实验根据的,那就是微波背景辐射。当然这个背景也不是绝对均匀的。但在数学上,这样的空间就是具有最大对称性空间。
人类生活在其中的宇宙,浩瀚神秘,每当仰望星空,很多人都会好奇,宇宙,到底是有限还是无限的,宇宙是不是自相似的具有分形结构,是否天圆地方,是否有沉睡在宇宙深处的黑暗能量,外星球有没有象人类同样的孤寂和智慧。在中国古代,就有《天问》的说法,问天问地,十分好奇的一种心态。
目前的观测似乎说明,我们的宇宙3维空间部分具有最大对称性。单连通3流形具有最大对称性的,只有3种,E3,S3,H3。这个分类的结论与Thurston有联系。Thurston把单连通3维的几何体分成8种,前面的3种就是E3,S3,H3,允许6个独立killing场,具有最大对称;后面的5种分别为S2×S1, H2×S1, Sol, Nil 和 SL(2,R),允许3个独立killing场,具有均匀性(spatially homogeneous),但不具有各向同性。所有这一切的前提,全是研究单连通流形。至于不是单连通的,或者其他情景,只能让人归结到poincare猜想。这个问题是非常有趣的,顺带地,毕达哥拉斯最早知道,正多面体只有5种,这相当于冰山的一角,推广到高维空间,问有多少个超正多面体。冰山暴露出来,一定让很多人大吃一惊,这样的冰山,可以化神气的泰坦尼客为腐朽,把繁华变成南柯一梦。
话说回来,我们的宇宙,在空间上是什么样子的呢?真的是E3,S3,H3的其中一种吗?罗伯逊和沃克RW度量描述了这3种情况。RW度量的给出,纯粹是从对称性的考虑和宇宙膨胀的事实中写出来的。这个RW度量不是真空爱因斯坦方程的解。
- 相关回复 上下关系8
😨很好的文章,很可惜我看不懂 水风 字0 2005-01-28 23:10:20
😁好办 ArKrXe 字124 2005-02-01 15:31:28
😄有道理,你有空的话多写写,我给你擂鼓助威 水风 字264 2005-02-01 21:14:36
【文摘】第十章 宇宙学之一
【文摘】第九章 黎曼曲率杂谈 1 不爱吱声 字6250 2005-01-23 18:42:45
😜其他地方看到的,发新贴好象不值,就挂在您老大这篇下面了,大家轻松一下 今昔 字674 2005-01-19 08:53:24
😅所谓无知者无畏! 不爱吱声 字623 2005-01-19 11:34:11
😁【反驳】真正的超光速是存在的! ArKrXe 字457 2005-01-19 14:25:59