五千年(敝帚自珍)

主题:应用科学的学者和工程师是如何工作的? -- changshou

共:💬23 🌺93
全看分页树展 · 主题 跟帖
家园 机器学习领域的例子

逐项回答changshou同学的问题。

1 到今天是不是已经不存在 一两个工程师单打独斗就能取得重大进展 的机会了?如果是的话,原因是什么?

答:在应用领域仍然存在英雄。似乎是生物学家饶毅说过一段这样的话,有人喜欢选择做小而美的问题,有些人喜欢做大问题。

在我的领域中,仍然有不少小而美的问题。

我的背景是机器学习,即给你一些真实样本,比如年龄、心跳、胆固醇、手术预后数据和术后生存年限,让计算机自动构建一个模型,来猜测一个刚完成手术的病人的期望生存年限。

一般来说,模型就是指一个数学函数。早期,大家都接受函数的输入和输出之间满足线性关系。后来慢慢的就扩展到非线性模型。再慢慢的,发现对模型完全没有约束的话,你总能找到一个数学函数精确的匹配每个样本点,但是对于未来的样本,就错的一踏糊涂。然后大家就开始想怎么对模型做正确的约束。在这个过程中,有许多论文,但最闪光的观点来自于少数几个人

2 一个浩大的前沿技术工程(比如 J20的研制)如果牵涉很多不同学科的工程师 如何进行组织?是不是需要几个 知识极为渊博的全才性的天才人物 来统摄全局?还是各学科的头头搞地位平等的协商就可以了?抑或有其他什么办法?

也许你们会觉得荒唐,但是对我这个搞纯理论的人来说 能组织几百几千个背景很不同的学者为了一个具体目标工作 是一件不可思议的事情(我非常佩服)。在我的领域中,这种事从来就没见过,而且也看不出如何能搞起来(唯一的办法似乎是出现 强得不可思议的历史上前所未有的超天才)。

答:但是,也有大问题。以下是几个我觉得有趣的大问题:

* watson。让计算机参与百万富翁电视答题节目,让计算机理解问题并回答。这是IBM的大项目,至少有几十个人。

* 搜索引擎。任给一个查询,给出最好的网页。这个项目是上百人的规模。

* 自然语言理解、Read the web。让计算机自己去阅读整个互联网,并证明计算机能够理解它所阅读的东西。

对于这种项目,应该怎么解决呢?总的来说是分解问题。对于科研共同体,因为没有权威,大家各有各的分法。有些分法大家都接受,就能吸引到最多的研究人员。以第三个项目为例,大家选择的方式是把自然语言理解分解成:找到词语、找到短语、理解语法、理解某些特定的语法块(比如A is B's mother/brother)、提取命名短语(如时间、地点、人物)。

做了几十年做不动了,大家就换个方向,做一些小问题,比如机器翻译,最早是查表法(china永远翻译成中国),后来是上下文(如果附近看到plate,那么china可能是瓷器)。这些小问题有的时候反过来帮助“自然语言理解”这个圣杯。

如果是公司里面做,分解问题的方法就会比较野蛮,最初的几个人决定了架构。这个架构可以不对,但往往可以带着你做到70分。

3 数学对工程师们而言有多重要?大学里学的数学有用吗?大学里学的数学够用吗?我常听到一种说法就是有经验的人告诉学弟学妹 大学里要尽量学好数学。这是普遍的看法吗?

答:有用。但大部分人数学不好。所以大家就会选择非数学的解决方法。有些时候也能有很好的结果。。。不一定比数学好的朋友涨薪慢。。

4 工程师们会刨根问题的问问题吗?刨到什么程度会满足?例如,(我猜)搞化工的应该都知道元素周期律。 那么化工工程师会不会设法搞清楚怎样由量子力学导出元素周期律? 如果知道了,会对工作有帮助吗? 如果不知道,心理上会觉得受困扰吗?

答:如果我是学化工的,我应该会停在元素周期律层面。业余会往深里学,但基本上就是个人爱好,对工作不会有短期帮助的。二十年后会不会有帮助我就不知道了。在工作中有许多有趣的现象,但往往满足于记住他们:比如A方法一般比B方法好。有些时候会往里走深一点,但是没有太多时间。

5 向上级递交重要报告的时候,工程师是如何保证其可靠性的?我估计在应用中是不可能有数学和物理教科书式的严密性的(基础理论研究则可以做到这一点),故有此一问。

答:这个问题简单。1) 统计显著性。随机进行多组实验,假设一个高斯分布。2) 说服。诉诸人的常识。

6 假如出现了新的前沿技术,而这前沿技术不是原先技术的改进 而是由基础研究的新发展给出的,那么工程师会不会去主动地学习基础研究的新发展(比如去学一些没学过的数学和物理)?抑或是会要求搞基础研究的人把它翻译重组为一种很实用化的贴近工程师原先知识体系的“包裹" 然后学习这个包裹以便快速上手?

答:两种情况都有。有些时候数学家进入我们的领域,带来一些新风。有的时候我们领域的研究人员去读读别人的工作。就我所知,懒人居多,大家都不喜欢读原始文献。所以统计方法被引入自然语言领域的时候,有一个公式错了好几年。

全看分页树展 · 主题 跟帖


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河