- 近期网站停站换新具体说明
- 按以上说明时间,延期一周至网站时间26-27左右。具体实施前两天会在此提前通知具体实施时间
主题:【原创翻译】《量子》----第一部·量子 -- 奔波儿
在一堂时间为两个小时的法语考试中,爱因斯坦写了一篇题为《我的未来计划》的作文,在文章开头他写道:“快乐的人总是满足于现状,而对未来漠不关心”。他擅长抽象思考,但动手能力偏弱,因此他给自己的未来设计的是做一名数学和物理老师。1896年10月,理工学院特别招收了11名新生,准备将他们培养成数学和科学科目的教师,爱因斯坦是年纪最小的学生,也是五名准备当数学和物理老师的学生之一。这些学生中仅有一名女生,她将成为爱因斯坦未来的妻子。
爱因斯坦的朋友都不明白他怎么会喜欢上米列娃·马利奇(Mileva Maric)。这是一位拥有匈牙利国籍的塞尔维亚族姑娘,她比爱因斯坦大四岁,稍微有点跛,是小时候由于肺结核引起的后遗症。第一学年,他们得学习五门数学必修课和一门力学课,这也是唯一一门物理类课程。尽管爱因斯坦在慕尼黑就已经通读了他的那本几何学宝典,但现在他却丧失了对数学的兴趣。他的数学教授赫尔曼·闵可夫斯基评价当年的爱因斯坦时说他就像“一条懒惰的狗”。爱因斯坦后来承认他并不是不喜欢数学,而是因为自己听不懂课,“要想在基本的物理知识的基础上更上层楼,进一步去探索更加艰深的知识,你必须要掌握复杂的数学方法。”几年后,当他在学术研究的道路上艰苦跋涉时,他才明白这个道理。他很后悔自己当时没有刻苦学习,也因此没有受到“良好的数学训练”。
幸运之神再次光顾了爱因斯坦。班上除了爱因斯坦和米列娃,还有其他三名同学,其中有一位叫马塞尔·格罗斯曼(Marcel Grossmann),他的数学非常好,而且比他们俩更好学。后来在爱因斯坦钻研相对论的时候,他向格罗斯曼寻求帮助,请他来帮助构建理论公式。这两人很快就成为了好朋友,经常在一起热烈地讨论“那些所有具有好奇心的年轻人都喜欢关注的话题”。格罗斯曼比爱因斯坦年长一岁,他就像是一位目光如炬的法官,判断出爱因斯坦是个非凡的人物,因此他把爱因斯坦带回家拜会自己的父母。“这位就是爱因斯坦,”他向父母介绍说“总有一天,他会成为一位非常伟大的人物。”
幸亏有了格罗斯曼的数学笔记,爱因斯坦顺利通过了1898年10月的中期考试。那时,爱因斯坦经常翘课,如果没有格罗斯曼相助,爱因斯坦简直无法想象自己会落到什么结局。在上物理学教授海因里希·韦伯(Heinrich Weber:1843~1912)的物理课时,爱因斯坦起初感觉像是换了一个天地。他期盼着“上完一堂再上一堂”。韦伯当时有五十多岁,他讲的物理课非常生动,很受学生欢迎。爱因斯坦坦承他所讲的热力学反映出他“非常精通这门学问”。但是,因为韦伯没有讲授麦克斯韦的电动力学或者其它物理学前沿知识,爱因斯坦对此很不满。不多久,爱因斯坦特立独行而又轻狂不羁的言行让这位物理教授对他白眼相加。“你是个聪明孩子,”韦伯对他说:“但是你有个很大的缺点,那就是你听不进别人的话。”
1900年7月,结业考试结束了,爱因斯坦在五名学生中排名第四。这场考试将他压得喘不过气来,而且在以后的岁月中,还将持续给他带来梦魇,甚至让他觉得“整整一年中,我一想到任何科学问题,就痛苦不堪”。米列娃名列末席,也是唯一一个没通过考试的学生。当时,他们俩已经俨然是一对小情侣,互相称呼彼此为“Johnzel”和“Doxerl”。这场考试对他们的打击无疑是惨重的,但更严重的打击接踵而来。
爱因斯坦显然并不是学校教师的合适人选,但在苏黎世四年的学习生活让他有了新的野心---他要成为一名物理学家。但在当时,即使是最优秀的毕业生,能得到一份大学的全职工作的机会也是微乎其微。一般来说,第一步是先给理工学院的某位教授当助理。可是,没人愿意要爱因斯坦,他只能另谋出路。在爱因斯坦看望父母期间,他于1901年4月在给米列娃的信中写道:“无论这位物理学家是身在北海还是在意大利的最南端,只要他能给我一份工作,我都会倍感荣耀的。”
爱因斯坦向欧洲各个大学的教授们投寄了求职信,其中有莱比锡大学的化学家威廉·奥斯特瓦尔德(Wilhelm Ostwald:1853~1932)。爱因斯坦一连给他写了两封信,但却石沉大海,没有回音。爱因斯坦的父亲看着自己的儿子一天天在绝望中挣扎,心痛不已。赫尔曼(也就是老爱因斯坦)瞒着阿尔伯特,决定亲自干预这件事情。“尊敬的教授先生,请原谅一个作父亲的人为了自己的儿子如此鲁莽地向你寻求帮助。”他在给奥斯特瓦尔德的信中写道“所有那些有权利做出判断的人都盛赞他的天才;无论如何,我向您保证他特别好学而且勤奋,对科学事业怀有无比的热忱。”但是,这封感人至深的信还是泥牛入海。多年以后,奥斯特瓦尔德成为第一个提名爱因斯坦为诺贝尔奖候选人的那个人。
本帖一共被 3 帖 引用 (帖内工具实现)
尽管反犹主义可能是部分原因,但爱因斯坦坚信最主要的原因是韦伯给他写的那份糟糕的推荐信让他屡战屡败。在他越来越觉得自己孤立无助的时候,一封来自好友格罗斯曼的信让他拨云见日,他总算有可能获得一份体面且报酬丰厚的工作了。格罗斯曼的父亲在得知爱因斯坦处境艰难后,决定出手帮助这个被自己的儿子热烈推崇的年轻人。他有位朋友弗里德里希·哈勒尔(Friedrich Haller)在伯尔尼的瑞士专利局做主管,正好那儿有了一个空缺职位,因此他向自己的朋友强烈推荐爱因斯坦。“昨天,我收到了你的来信,”爱因斯坦在给马塞尔·格罗斯曼的信中写道:“你的无私帮助和同情心让我非常感动,你还没有忘记你这个不幸的老伙计”当了五年的无国籍人士以后,爱因斯坦刚刚获得了瑞士国籍,这也有助于他获得这份工作。
大概是爱因斯坦最终到了转运的时候。在距苏黎世不到二十英里的地方有一个小镇叫温特图尔(Winterthur),爱因斯坦在那儿得到一份临时的教职。每天早上他要上五、六节课,下午的时间属于他自己,他可以用来专研那些物理问题。“我不知道该怎么向你描述,这份工作让我是多么地快乐。”在结束在温特图尔的工作前,他在写给温特勒爸爸的信中谈到“我已经彻底放弃在大学中谋一份职位的野心,因为我发现其实现在这样子,我就有足够的能力和心思进行科学探索。”很快,这份能力就迎来了它的考验,米列娃宣布她怀孕了。
在第二次考砸了理工学院的结业考试后,米列娃回到了匈牙利的父母身边,静静地等待着婴儿的出世。听到米列娃的怀孕消息,爱因斯坦并没有感到紧张。他曾经有当保险业务员的念头,但现在他发誓愿意做任何职业,哪怕是低三下四的工作,这样他们就有能力结婚了。他们的女儿出世的时候,爱因斯坦还在伯尔尼。他从来没有见过这个叫丽热尔(Lieserl)的孩子,到底什么事情发生在她身上,她是被弃养了还是夭折了,这些都成了迷。
1901年12月,弗里德里希·哈勒尔给爱因斯坦写了封信,让他申请专利局的空缺职位,且该职位的招聘信息即将公之于众。爱因斯坦在圣诞节前投寄了自己的求职申请,寻求一份稳定职业的道路似乎不再是那么杳无止境。“一想到光明的未来在等待着我们的到来,我就欣喜若狂,”爱因斯坦在给米列娃的信中写到“我有没有告诉过你我们在伯尔尼将会如何富足?”爱因斯坦当时在沙夫豪森(Schaffhausen)的一所私立寄宿制学校当老师,他的合同本来是一年期的,但在他确信万事俱备以后,他只干了几个月就辞职而去。
本帖一共被 3 帖 引用 (帖内工具实现)
"每周四,塔木德会受邀邀爱因斯坦家吃晚饭"
应该是受邀到?
前面的章节仿佛也有几个,现在找不到了
我这人一惯粗心大意,类似错误太多。看来每次写完,最好多过两遍,再发。
要不然就花一大笔钱把这文章买下来发表了,只搁在网络上,委屈了
1902年2月的第一个礼拜,爱因斯坦来到了伯尔尼,成为这座拥有60万人口的城市之一份子。五百多年前,一场大火将半个城市烧成了瓦砾场,废墟上修建的建筑至今保存完好,故此,这儿的老城区依旧散发着中世纪特有的优雅。爱因斯坦在司法街(Gerechtigkeitsgasse)租了一间房子,离著名的熊苑(Bear Pit)并不很远。房租是每月23瑞士法郎,爱因斯坦在写给米列娃的信中吹嘘说房间“又大又漂亮”,但事实上这只是虚幻的泡影。爱因斯坦放下行李,接下来就在本地的报纸上去刊登家教广告,愿意帮人辅导数学和物理。二月五日星期三的报纸登出了这则广告,上面说这位家教老师愿意先试教一堂课。几天后,就有了回音。在他的一名新学生眼中,爱因斯坦的形象是“身高大约为五英尺十英寸,宽肩膀,稍微有点佝偻,白褐色皮肤,一张感性的嘴,黑胡子,鼻梁高挺,一对锋芒必露的褐色眼睛,声音很悦耳,法语说得很好,但稍微有点儿口音”。
莫里斯·索罗温(Maurice Solovine)是一位犹太裔的罗马利亚小伙子,一天他在大街上一边走一边读报纸的时候,看到了这则广告。索罗温当时在伯尔尼大学读哲学,他对物理学也很感兴趣。但苦于缺乏必需的数学基础,索罗温无法深入掌握物理知识,于是他按图索骥,拿着报纸找到了爱因斯坦的住所。索罗温按响了门铃,门开了,一聊,爱因斯坦发现自己和他有一种相见恨晚的感觉,这对师生畅谈了两个小时,他们在很多方面有着共同的兴趣和爱好。爱因斯坦将索罗温告送出门后,两个人站在大街上又聊了半个小时,他们决定第二天继续会面。再次碰头的时候,他们起初是准备讨论一下如何系统化地进行家教,但是他们所共有的探索新思想的热情让他们完全把自己的初始目标抛在脑后。“事实上,你根本没与必要找人辅导物理。”爱因斯坦在第三天对索罗温说。索罗温最赞赏爱因斯坦的一点,也是促使他们闪电般成为好友的主要原因,是爱因斯坦能够非常清晰地阐述一个问题。
过了一阵子,索罗温建议他们应该有选择性地读一些书,然后再一起讨论里面的内容。在爱因斯坦读中学的时候,他在慕尼黑的那位忘年交马克斯·塔木德(Max Talmud)就曾经用过类似的方法和他讨论问题,爱因斯坦认为这是一个绝妙的主意。不多久,康拉德·哈比西特(Conrad Habicht)也加入到他们中来。哈比西特是爱因斯坦在沙夫豪森寄宿制中学认识的一位朋友,他来此的目的是为了完成自己在伯尔尼大学的一篇数学论文。由于在探索和研究物理学及哲学方面有着共同的热情,他们三人互相称呼彼此为“奥林匹亚院士(Akadmie Olympia)”。
(自左向右依次为:哈比西特、索罗温和爱因斯坦)
尽管爱因斯坦是专利局主管哈勒尔的朋友隆重推荐来的,但哈勒尔必须得先确保爱因斯坦能够胜任这份工作。当时,电器工业领域的专利申请量迅猛增长,因此很有必要雇佣一位能干的物理学家来配合专利局的工程师们一起工作,而不能只是为了买老朋友一个面子。爱因斯坦给哈勒尔留下了很深的印象,他给了爱因斯坦一份临时雇佣合同,并给他评为“三级技术专家”,年薪3,500瑞士法郎。1902年6月23日清晨8点,爱因斯坦首次来到专利局上班,从此开始了他作为“一位受人尊重的联邦墨水涂抹客(a respectable Federal ink pisser)”的生涯。
“作为一位物理学家,”哈勒尔告诫爱因斯坦,“你对技术图纸一无所知。”在爱因斯坦能够读懂技术图纸之前,他暂时没有得到长期雇佣合同。哈勒尔手把手地教爱因斯坦掌握必需的知识,包括如何清晰、简洁并准确地说出自己的想法。尽管爱因斯坦不喜欢被别人当作一个中学生那样来教导,但他明白自己应该悉心向哈勒尔学习,“这是一位性格鲜明、心思缜密的人,”爱因斯坦回忆说。“一旦我习惯了他的粗放的做派,”爱因斯坦说“我对他推崇备至。”在爱因斯坦用事实证明了自己的价值以后,哈勒尔对自己的这位弟子青眼有加,认为他是一名出色的员工。
本帖一共被 3 帖 引用 (帖内工具实现)
1902年10月,爱因斯坦的父亲时年55岁,已经病入膏肓,爱因斯坦闻讯,即刻赶往意大利去和父亲见最后一面。作为父亲的赫尔曼,在他渐渐步入人生终点的时候,终于同意自己的儿子阿尔伯特和米列娃结合,而在这件婚事上,他和妻子波林以前一直强烈反对。第二年的一月,爱因斯坦和米列娃在伯尔尼的婚姻登记处正式结婚,哈比西特和索罗温是他们唯一的见证人。“婚姻,”爱因斯坦后来说“就是让偶然事故变成永恒事件的一种尝试。”但是在1903年,爱因斯坦还是非常高兴自己有了一位妻子,她能为自己做饭、打扫卫生,还能大体照顾一下自己。米列娃想要的可不仅仅只有这些。
专利局的工作是一周48小时,从周一到周六,爱因斯坦八点上班,一直干到中午;然后回家或者和朋友在单位附近的一家咖啡厅吃午饭;两点回到专利局,一直干到下午六点,然后下班。他对哈比西特说自己每天“要花八个小时干些糊弄人的事儿”,接着“在星期天,还得做类似的事儿”。1904年9月,爱因斯坦的职位由临时的转成长期合同,他的年薪也涨了400瑞士法郎。1906年,哈勒尔发现爱因斯坦“擅长处理非常高深的技术专利”,故而对他的工作非常满意,评价他“是专利局所拥有的最棒的技术专家之一”,为此把他的技术职称调升为二级。
还在爱因斯坦刚刚搬到伯尔尼,正眼巴巴地期盼着他那份专利局的工作时,他曾经在写给米列娃的信中说“我将终生对哈勒尔感激涕零”。他当时的确是这样想的,但不多久,当他发现哈勒尔和专利局对他的影响一步步加深时,他有些改变了自己最初的想法:“也许我并不至于因此而死去,但我发现自己的智力越来越迟钝。”哈勒尔要求每一件专利申请必须要经过严格的审评,以防止出现任何法律上的争议。“在你处理一份申请的时候,如果你认为这位发明家在那儿胡说八道,”哈勒尔告诫爱因斯坦说“或者你被这位发明家的思路牵着鼻子走,你就容易先入为主,不能做出正确判断。因此,你必须要持有批判性的警惕态度”偶然间,爱因斯坦发现这份工作非常适合他的脾气秉性,而且有助于锤炼他的能力。在处理专利申请的时候,他经常要面对破绽百出的技术图纸和挂一漏万的技术参数,因此他不得不时刻保持批判警惕的态度,来认真评判每一位发明家的想法,为此得用上他的物理知识。在工作中,他经常得做到“多方面进行思考”,在他看来这不啻于是一件“货真价实的礼物”。
“他有一种天份,就是能在一片混沌中或者从大家熟视无睹的东西中,发现其背后所隐藏的真正有意义的东西。”爱因斯坦的朋友和理论物理学家马克斯·玻恩(Max Born:1882~1970)回忆“爱因斯坦之所以如此与众不同,正是因为他具有这种不可思议的洞悉自然奥秘的能力,而不是因为他的数学能力。”爱因斯坦也知道自己的数学水平马马虎虎,以至于他很难区分“什么是最基础的知识,而什么才是那些多少不是太重要的其它知识”。但一旦涉及到物理学领域,爱因斯坦的嗅觉就异常敏锐,他说自己“学会了如何从一团乱麻中寻找出最重要最核心的东西”。
在专利局工作的那些日子,爱因斯坦所特有的这种敏锐嗅觉大放光彩。当爱因斯坦处理发明家提交的专利时,他需要找出技术图纸中那些在物理学家看来违背自然定律的问题和漏洞。每当他发现这类违背物理理论的东西,他就会不知疲倦地探求下去,直至能够最终解决这个问题,或者是找出一种新的替代理论对矛盾之处进行解释。在物理学的核心领域,当爱因斯坦发现了有关光的观测与理论互相矛盾的时候,他所提出的替代理论就是光在一定程度上实质是由一束粒子流,也就是光量子组成的。
本帖一共被 3 帖 引用 (帖内工具实现)
爱因斯坦很早就认同任何物质的基本组成单位是原子,而且原子是离散的、不连续的,且具有能量。例如,气体的能量是组成气体的单个原子的能量之总和。但是,一旦进入光学领域,情况就完全不一样了。无论是根据麦克斯韦的电磁理论或者根据波动理论,随着传播范围的扩大,光线的能量会逐步发散出去,就像往池塘里投进一颗石头,水波会从一点向外辐射。爱因斯坦称之为一种“抽象的形式上的差别”,这个问题一直困扰着他,但同时也激发了他“从多方面去考虑问题”。他认识到如果光是非连续的,且是由量子组成的,那么物质的非连续性同电磁波的连续性之间所存在的鸿沟就能够被跨越。
当爱因斯坦阅读普朗克缩写的关于如何推导黑体辐射公式的论文时,光量子的概念浮上他的心头。他认为普朗克的公式是正确的,但是却对他的分析过程表示质疑。假如普朗克的分析是正确的,他应该得到完全不同的公式才对。但是,由于普朗克已经先入为主知道了答案,也就是他的公式,他在推导过程中刻意地向自己的结论前进。爱因斯坦找到了普朗克陷入迷茫的症结所在。这是因为普朗克知道他自己的理论公式与观测结果完全吻合,但是想利用他自己熟知的或者认同的理论和技术推导这个公式却只能是导致失败。如果普朗克霸王硬上弓,爱因斯坦敢断定他最终所得到的公式与观测结果将大相径庭。
瑞雷爵士在1900年6月的时候曾经提出另一个公式,但普朗克却可能根本没关注过它。当时,普朗克并不相信原子的存在,因而也反对瑞雷所使用的能量均分定理(Equipartition Theorem)。原子只能向三个运动方向自由运动,即:上下、前后和左右。这也被称为“自由度(Degree of Freedom)”,每一个自由度代表一个独立坐标方向,在此方向上原子上能够接受和存储能量。在这三种“平移(translational)”运动的基础上,如果一个分子是由两个或更多个原子组成的,则这些原子间那些虚拟的连接轴会有三种转动形式,也就是说该分子总计有六个自由度。根据能量均分原理,气体的能量被均匀地分配给所有的气体分子,而每个气体分子的能量又将被平均分配在其可以运动的每个方向上。
瑞雷利用能量均分原理,将黑体在内腔中不同波长上的辐射能量进行细分,这种方法将牛顿、麦克斯韦以及玻尔兹曼的物理理论完美地融为一体。但这种方法存在数值误差,后来虽然被英国物理学家詹姆斯·金斯(James Jeans:1877~1946)修正,但依旧存在问题,这就是瑞雷---金斯定律(Rayleigh-Jeans Law)。根据这一定律,黑体辐射能谱在紫外区域会趋向无限大。这种结果是对经典物理学的颠覆,在多年以后的1911年,它被人戏称为“紫外灾难(Ultraviolet Catastrophe)”。幸运的是,这种情况实际上是不会发生的,因为宇宙中紫外辐射无处不在,如果真如瑞雷---金斯公式预测的那样,人类根本无法生存。
爱因斯坦也独自推导出瑞雷---金斯定律,他发现该公式所预测出的黑体辐射值偏离实际观测值,特别是在紫外区域会得出能谱无限大这样荒谬的结果。假设瑞雷---金斯定律只在长波长(即低频)范围内成立,爱因斯坦决定从较早的由威廉·维恩提出的黑体辐射公式着手开始研究。尽管维恩的公式仅仅在短波长(即高频)范围内有效,而且无法预测长波长(即低频)范围内的能谱值,但这是唯一稳妥的选择。另外,对爱因斯坦而言,这一公式有以下几个优点:首先,爱因斯坦熟悉该公式的推导过程;其次,至少它能够完美地解释一部分的黑体辐射能谱,爱因斯坦将先从这部分入手。
本帖一共被 3 帖 引用 (帖内工具实现)
爱因斯坦有个简单但精妙的方案。气体是若干粒子的集合体,在其处于热平衡状态时,气体的物理特性,诸如某一温度下的压力,是这些单个粒子的物理特性的总体效应。假定黑体的物理特性也和气体是类似的,那么可以认定电磁辐射本身也应该是若干单个粒子的物性的总体效应。爱因斯坦假设自己的这个黑体模型也是中空的,但和普朗克不同,他在空腔内填充的是气体粒子和电子。然而,黑体内壁上的原子还拥有其它电子。当对黑体进行加热时,电子在广泛的频率范围内发生震荡,并释放或者吸收辐射。于是,黑体内部充盈着高速运行的气体粒子和电子,以及震荡的电子所释放的辐射。经过一段时间,就能达到热平衡状态,这时,黑体内腔以及其中所包含的粒子均稳定在温度T。
根据热力学第一定律,能量是守恒的,且能够通过熵值来反映出某个系统所具有的能量、温度以及体积之间的关系。爱因斯坦“没有去建立释放或者传播辐射的模型”,而是利用这一定律,以及维恩定律和玻尔兹曼的理论去分析黑体辐射的熵值与内腔体积之间的相互关系。他所发现的公式反映如果气体是由原子组成的,则其熵值是由其所占的体积大小决定的。黑体辐射所体现的特征说明辐射能量是由单个能量粒子组成的。
爱因斯坦将普朗克的黑体辐射公式和其理论弃之不用,因为他已经发现了光量子。为了与普朗克保持区别,爱因斯坦所给出的公式与其稍有不同,但都包含了一个关键信息,即E=hv,也就是说能量是量子化的,其基本单位是hv。普朗克以前是对电磁辐射的释放和吸收均做了量子化,从而能够准确计算出黑体辐射的能谱分布,而爱因斯坦所作的除了这些,还包括对光本身的量子化。例如,黄色的光的量子化能量即为普朗克常数乘以其频率值。
爱因斯坦的研究发现辐射本身也像气体一样具有粒子性的特点,他因此判断自己通过光量子就已经初窥门径了。爱因斯坦的新的“观点”着重于光的本质,但为了说服其他学者接受这一“开创性的”理论,他得利用这一理论去解释一些人们难以理解的现象。
1887年,德国物理学家海因里希·赫兹(Heinrich Hertz:1857~1894)为了证明电磁波的存在进行了一系列实验,他的意外收获是发现了光电效应(Photoelectric Effect)。无意中,他注意到一个现象,就是当一束紫外线照射到一对金属球其中一个时,金属球之间出现了电火花。为了弄清楚这个“全新的但非常费解的现象”,赫兹花了好几个月的时间,可惜一无所获。另外,他错误地认为这一现象仅限于紫外线。
“一般说来,如果一个问题不是太令人费解,那将是多好的一件事情;”赫兹承认,“但是,人们总是希望通过解决某个问题能够发现一些新的东西,至于解决这个问题的是难是易并不是那么重要。”他的这番话就像是一个神奇的预言,可惜他没能在有生之年看见这一预言如何得以验证的。1894年,赫兹病逝,年仅36岁。
1902年,曾经为赫兹做过助手的菲利普·莱纳德(Philipp Lenard:1862~1947)对光电效应做了进一步的研究,他发现如果将一个玻璃管内的空气抽空,然后在里面放置两个金属板,一样存在光电效应,也就是说在该效应在真空状态下同样存在。莱纳德将金属板与电池连接,他发现如果用紫外线照射一个板子,就会有电流产生。光电效应被解释为当金属表面受到光的照射时,会释放出电子。当紫外线照到金属板上时,一部分电子获得了足够的能量,从而能够逃离金属板,并通过板子之间的空隙抵挡另一块金属板,这样就形成了一个回路,“光电电流(Photoelectric Current)”随之产生。然而,莱纳德同时发觉这一现象与已有的物理理论相冲突。现在,该爱因斯坦和他的量子登场了。
本帖一共被 3 帖 引用 (帖内工具实现)
而在(2.6)中,爱因斯坦这回靠的是他铁哥们的老爹。呵呵,这回你的问题算是圆满回答了吧?
按照莱纳德的估计,如果只是增加光束的强度,也就是让其更亮一些,则从金属板上逃逸出的电子数目是不变的,但同时每个电子所携带的能量将会增加。但是,莱纳德却发现完全相反的现象:大量的电子逃逸出来,但单个电子所携带的能量并没有变化。爱因斯坦用量子理论对其给出了非常简明扼要的解释:如果光是由量子组成的,则增加光的强度也就是说光将由更多的量子组成。当更强的光束照射到金属板上时,光量子数目的增加相应导致有更多的电子发生逃逸。
莱纳德此外还有第二个奇异的发现,即逃逸电子的能量并非由光束的强度决定,而是受其频率控制。爱因斯坦早对此早已有了答案。既然光量子的能量与频率呈正比,那么红光(低频)光量子的能量自然比蓝光(高频)光量子的能量要低。当光的颜色(频率)发生变化时,量子的数目并不会因此而改变。因此,当光的强度为固定值时,无论何种颜色的光照射到金属板上,逃逸的电子数目都是一成不变的,其原因是由于击中金属板的光量子数目是固定的。但同时,因为不同频率的光的光量子所带有的能量是不同的,所以逃逸电子所具有的能量大小将仅仅取决于是什么颜色(频率)的光照射到板子上。例如,紫外线找射到金属板上时,逃逸电子的能量将远远大于用红光照射金属板。
另外,还有一个复杂的现象。对任何金属,都存在一个最低的或者“临界频率(Threshold Frequency)”,当照射光的频率低于该临界值时,无论照射时间有多长或者强度有多高,都不会有电子逃逸。然而,一旦照射光的频率突破这一临界值,则无论光束如何昏暗,都会有电子逃逸。爱因斯坦的光量子理论再一次对此给出了答案,不过这一次,他引入了一个新概念---“功函数(Work Function)”。
在爱因斯坦看来,光电效应的产生是因为电子从光量子那儿获得了足够的能量,从而摆脱了将其控制在金属板上的约束力以后,最终逃之夭夭。爱因斯坦所说的“功函数”就是电子逃离金属板时所需要的最小能量值,不同金属的功函数是不同的。如果光的频率太低,则光量子的能量将不足以驱使电子突破桎梏,而只会停滞在金属板内。
对此,爱因斯坦用一个简单的方程作出了解释:如果一个电子能从金属板上逃逸,则其所具有的最大动能等于光量子的能量减去功函数。利用这一方程,爱因斯坦给出了一张图,横坐标为频率,纵坐标为最大动能,则每一种金属对应的曲线应该为一条直线,且其起始点为该金属的临界频率。而这条直线的梯度值(即斜率)与金属种类无关,而应该正好等于普朗克常数h。
“尽管在内心深处我非常抵触,但为了验证爱因斯坦在1905年提出的这个方程,我花了整整十年功夫,”美国实验物理学家罗伯特·密立根(Robert Millikan:1868~1953)说这话的时候,怨气冲天,“这个方程毫无逻辑,因为它违反了我们所了解的一切与光干涉相关的理论。可是呢,我不得不承认这个方程的的确确得到了实验结果的验证。”1923年,密立根获得了诺贝尔物理学奖,很大一部分原因就是由于这件验证工作。尽管是他亲手得到的实验数据,但他依旧拒绝接受观测结果背后的量子解说:“该方程所依据的物理理论是站不住脚的。”其实,从一开始,大部分物理学家都对爱因斯坦的光量子理论持质疑和不屑的态度。还有一部分人怀疑光量子是否真的存在,或者光量子只是为了计算方便而虚构出来的一个东西。而最正面的看法认为光以及所有的电磁辐射并非是由量子组成的,而只是在它们与物质进行能量交换时表现得像是量子化而已。持有这种观点的人中包括普朗克。
1913年,普朗克和其他三人提名爱因斯坦为普鲁士科学院的院士。在做陈述发言的时候,他们是这样品评爱因斯坦的光量子理论的----“总而言之,我们可以说尽管现代物理学中有着各种各样的重要领域尚待人们去探索,但爱因斯坦并没有真正在这些领域上做出什么惊人的成就。他的某些猜想,比如他的光量子假说,可能离真正的目标差之毫厘谬以千里,但这并不能作为我们反对他的理由。因为,如果我们不去时不时地做点有风险的事情,那么在自然科学领域,我们将永远不会有真正的创新。”
两年之后,耗费密立根大量心血的实验证明了爱因斯坦的光电方程(Photoelectric Equation)是正确的。光电效应定律(Photoelectric Effect Law)的数学公式得到了大家的广泛认同,但其背后的光量子解释鲜有支持。尽管如此,凭借这一定律的发现,爱因斯坦于1921年终于被授予了姗姗来迟的诺贝尔物理学奖,而在这之前大家觉得这根本就是痴人说梦。从此以后,爱因斯坦不再是那位寂寂无名的伯尔尼专利局公务员,而将凭借其伟大的相对论名扬世界,并将被大家公认为是自牛顿以后最伟大的科学家。可是,在当时,因为他的光量子理论太过超前,所以物理学界还不能认同这一学说。
本帖一共被 3 帖 引用 (帖内工具实现)
多么广阔的胸怀啊。
奔兄翻译的这部《量子》真是深入浅出。 要知道, 要真正做到深入浅出, 其实是一件非常难的事情。 奔波儿兄翻译得也非常准确到位, 至少, 俺看得不幸苦。 想想当年上《大学物理》课, 涉及到这段文章中的概念时, 那叫一个痛苦! 呵呵。
是原书写得好,俺可不敢掠人之美。
爱因斯坦的光量子理论之所以遇到重重阻力,是因为存在大量的事实支持光是一种波这种看法。实际上,人们对光到底是一种波还是一种粒子已经热烈争论了很长一段时间。在18世纪以及19世纪早期,艾萨克·牛顿提出的粒子说占绝对统治地位。“在这本书中,我的想法并不是要用一种假说来解释光的特征,”牛顿在1704年发表的《光学(Opticks)》一书的开篇中就说“,而是通过逻辑推理和实验结果来验证这些特征。”牛顿在1666年做了很多探索性的光学实验,他曾经利用一个三棱镜将一束白光分解为一道七色彩虹,然后又利用另一个三棱镜把这些彩光合并为一束白光。因此,牛顿认为光线是由粒子,也就是他所命名的“微粒(Corpuscles)”组成的,这种粒子是“从发光体释放出来的微小物体”。根据牛顿的理论,这些光粒子是直线前进的,并可以用来解释很多日常现象,比如人们可以听见几角旮旯处的谈话声音,但是却看不见谈话的人,因为光线是无法弯曲的。
牛顿能够给出一套详尽的数学公式来解释很多光学现象,包括反射和折射(即光从稀疏物质进入致密物质以后,会发生弯曲)。但是,依旧存在一些光学特征无法用牛顿的理论来得到令人满意的解释。例如,当一束光线照射到玻璃面上时,一部分光线会透过玻璃传播,同时剩余部分会被反射出来。牛顿必须要回答的一个问题就是为什么一部分光粒子能够被反射,而另一部分却不能?为了回答这个问题,牛顿被迫对自己的理论作出修正。他认为光粒子通过以太(Ether)的时候,会引起波状扰动。这些所谓的“简单反射以及简单入射”在其物理机制上与一部分光线会通过玻璃而另一部分光线会被反射的现象是一致的。牛顿把这种扰动现象推而广之,并联系到颜色上面。在他看来,最强的扰动具有最长的波长,与红光的产生相关;而最小的扰动,则具有最短的波长,与紫光有关。
荷兰物理学家克里斯蒂安·惠更斯(Christiaan Huygens:1629~1695)对此持异议,他认为根本就不存在牛顿所说的这种光粒子。惠更斯比牛顿年长13岁,早在1678年,他就已经发展出一套光的波动理论,可以用来解释反射和折射现象。但是,他的光学著作《光的特点(Traité de la Lumière)》一直拖到1690年才得以发表。惠更斯认为光就是一种通过以太传播的波。当人们往一口平静的池塘中扔进一颗石子,就能看见波纹一圈圈传播开来,光也是以类似的方法传播的。如果光真的是由粒子组成的,惠更斯提出了一个质疑----那么当两束光线面对面相遇时,有没有迎头相撞的证据?惠更斯认为,没有任何这样的证据存在。声波是不会相撞;同样,光既然不会相撞,那也必然是一种波。
尽管牛顿和惠更斯各自的理论都能够解释光的反射和折射现象,但是如果将他们的理论用来解释其它光学现象会得出不同的结论。当时,由于观测精度的限制,他们的理论多年来都无法得以检验。但是,有一种人们所能观测到的光学现象恰巧可以用来检验。如果一束光线是由牛顿所说的粒子组成的,当它在直线传播过程中遇到某个物体阻挡时,应该会投下明暗分明的阴影;但如果这束光线是惠更斯所说的波,当它遇到同样的物体阻挡时,将会像所有的波一样围绕该物体发生弯曲,其投下的阴影会有一个模糊的边界。身兼耶稣会神父的意大利数学家弗朗切斯科·格里马尔迪(Francesco Grimaldi:1618~1663)发现光线在物体的边缘或者是一个非常狭窄的裂缝边缘,会发生弯曲,他将这种现象命名为散射(Diffraction)。格里马尔迪逝世以后又过了两年,即在1665年,他的专著得以面世。在书中,格里马尔迪描述了他所做的一个实验:在一个漆黑的房间,让一束光线通过百叶窗上的一个小孔投射到一个不透明的物体上,则光线会投下阴影,其范围要比假定光线是粒子而只能直线传播时所形成的阴影要大。另外,他还发现在阴影边缘存在着彩光,而且看上去很模糊,而如果是粒子波则只能形成明暗分明的边界。
牛顿也注意到了格里马尔迪的发现,后来自己也亲身做了相关的实验对散射现象进行研究,因为这一现象至少在表面上佐证了惠更斯的光波理论。但是,牛顿认为散射现象是因为力作用在光粒子身上的结果,而也正好进一步反映了光本身的特性。尽管牛顿的粒子理论在实质上只是将波和粒子混为一体,但由于他本人无与伦比的声望,他的理论被后人一直奉为圭臬。另外呢,惠更斯在1695年就逝世了,而牛顿比他多活了32年,这也在一定程度上帮助牛顿扩大和延续他的胜利。英国诗人亚历山大·蒲柏(Alexander Pope:1688~1744)见证了牛顿在他那个时代无与伦比的影响力,在为牛顿书写的墓志铭中,他写道:“自然以及自然法则处在漫漫长夜之中;上帝说,牛顿出来吧!从此世界一片光明”。牛顿于1727年逝世,在以后的很多年中,他的威名依旧如日中天,很少有人对他的光学理论产生过质疑。当19世纪的曙光到来的时候,一位名叫托马斯·杨(Thomas Young:1773~1829)的博学多才的英国人向牛顿发起了挑战,而且他的工作导致了光波理论的东山再起。
本帖一共被 2 帖 引用 (帖内工具实现)
杨生于1773年,家里有十个孩子,他是长子。两岁的时候,杨就能流畅地阅读书籍,六岁的时候,他已经把圣经通读两遍。另外,杨精通多国语言,他曾经为破译埃及的象形文字做出过重要贡献。杨还是一名训练有素的物理学家,因为他从一位叔伯那儿获得很大一笔馈赠,所以他从不为生计发愁,且可以随心所以专研自己喜欢的学问。杨对研究光的本质很感兴趣,他是从研究光和声音的异同入手的,最后发现“牛顿的光学体系存在一、两个问题”。他认为光的本质是一种波,为此他进行了一个实验,其结果宣告了牛顿的光粒子理论走到了终点。
杨将一束单色光照射到一块带有一个狭缝的幕布上。在通过这个狭缝以后,这束光又照射到第二块幕布上,这块幕布上有两个相互平行且间距很小的狭缝。就像汽车的头灯一样,这两个狭缝会变成两个新的光源,也就是杨所说的“两个离散点,从这两点开始,光向各个方向散射”。在第二块幕布背后相隔一段距离,还有第三块幕布,当光通过两个狭缝照射过来时,杨看见第三块幕布上面出现了一幅怪异的光带:中间为一条亮光带,在其两边为明暗相间排列的光带。
为了解释这些明暗相间的“条带”,杨用了类比的法子。如果在平静的湖面上同时扔进两个石头,且石头的落点间距很小,则两个石头都会在湖面上产生一圈圈向外传播的波纹。当两组波纹相遇的时候,如果是波峰遇到波峰或者是两个波谷相遇,则会相互叠加,从而产生更强的波峰或者波谷,即相长干涉(Constructive Interference);但如果是波峰遇见波谷或者波谷遇见波峰,则两者在相遇点会相互抵消,且该点会平静如常,即相消干涉(Destructive Interference)。
在杨所做的实验中,通过两个狭缝的光波在照射到幕布之前,会像水波一样会相互干涉,则幕布上的亮条纹对应于相长干涉,而暗条纹对应于相消干涉。杨认为只有当光是一种波时,才能解释这种现象。如果光是牛顿所说的粒子,则只会在幕布上产生两条亮光带,在它们之间为黑暗;而那种明暗相间的条纹是不可能存在的。
1801年,杨首次提出干涉的观点并报告了他的初步结果,但他向牛顿挑战的行为招致人们的口诛笔伐。为替自己辩护,杨写了一部小册子,在里面他向大家阐述了自己对牛顿的认识:“尽管我非常敬仰牛顿的大名,但是我并不会因此就把他看作是完美无缺的化身。当我发现牛顿同样也会犯错误,而且他的权威在一定程度上甚至阻碍了科学的前进时,我深深地感到遗憾,而不是欣喜。”可惜,他的小册子只卖出去一本。
紧跟杨的脚步,一位法国土木工程师也从牛顿的阴影下走了出来。奥古斯丁·让·菲涅耳(Augustin-Jean Fresnel:1788~1827)比他的这位前辈年轻15岁,他在对杨的工作一无所知的情况下,也独自发现了干涉现象,不过只是晚了些日子而已。但是,和英国人相比,菲涅耳设计的实验更巧妙,也从而获得了更多的成果。在他把自己的结果公布出来,并给出了相应的数学分析以后,从1820年开始,越来越的人转而支持光波学说。菲涅耳让大家信服了波动理论比牛顿的粒子理论更能够准确地解释一系列光学现象。另外,他还回答了另外一个困扰了光波理论很久的问题,也就是为什么光无法拐弯。他认为这是因为光波的波长只有声波波长的几百万分之一,因此当直线传播的光波出现弯曲时,人们很难去观测出来。波只有在遇到比其波长短的物体时,才会发生弯曲,声波波长非常长,因而能绕过其传播过程中所遇到的大部分障碍物。
本帖一共被 2 帖 引用 (帖内工具实现)