五千年(敝帚自珍)

主题:【原创】自动控制的故事(一)(完) -- 晨枫

共:💬488 🌺558
全看树展主题 · 分页首页 上页
/ 33
下页 末页
家园 北航的高先生?

是我们的高老师吗?

叫高什么啊?

家园 高为炳

94年就去世了.

家园 曾庆红是我们老师兄

这个官更不小~

家园 那几个图别提了..

书里的:

根轨迹17步最后画出来

奈奎斯特都是凭感觉来的

bode图就是看传递函数的类型弄个正负若干个20db的拐点..还有相位图..最后看增益裕量和相角裕量

发明这些的老变态们其实挺有水平的,两三个图就能先期判断出系统的状态了

回忆起来PID控制晨枫兄的经验在我们电气传动大实验里很有用~嘎嘎

家园 也八卦一下

王行愚是我师兄,邵世煌是我老师。哎,邵老师不是去交大了吗?什么时候去的中纺大?

浙大的路甬祥也可以算一个自控校长,和自控沾一点边。

家园 晨枫是不是学自动控制的

说到了根轨迹,奈奎斯特,不是一般的爱好者吧。

家园 谢谢提醒,以后一定注意
家园 是啊
家园 【原创】自动控制的故事(七)非常规PID

以频率分析(也称频域分析)为特色的控制理论称为经典控制理论。经典控制理论可以把系统的稳定性分析得天花乱坠,但有两个前提:一、要已知被控对象的数学模型,这在实际中不容易得到;二、被控对象的数学模型不会改变或漂移,这在实际中更难做到。对简单过程建立微分方程是可能的,但简单过程的控制不麻烦,经验法参数整定就搞定了,不需要费那个麻烦,而真正需要理论计算帮忙的回路,建立模型太困难,或者模型本身的不确定性很高,使得理论分析失去意义。经典控制理论在机械、航空、电机中还是有成功的应用,毕竟从F=ma出发,可以建立“所有”的机械系统的动力学模型,铁疙瘩的重量又不会莫名其妙地改变,主要环境参数都可以测量,但是经典控制理论至少在化工控制中实用成功的例子实在是凤毛麟角,给你一个50块塔板的精馏塔,一个气相进料,一个液相进料,塔顶、塔底出料加一个侧线出料,塔顶风冷冷凝器,塔底再沸器加一个中间再沸器,你就慢慢建模去吧,等九牛二虎把模型建立起来了,风冷冷凝器受风霜雨雪的影响,再沸器的高压蒸汽的压力受友邻装置的影响,气相进料的温度和饱和度受上游装置的影响而改变,液相进料的混合组分受上游装置的影响而改变,但组分无法及时测量(在线气相色谱分析结果要45分钟才能出来),动态特性全变了。

老家伙歌德两百年前就说了,理论是灰色的,生命之树常青。我们知道马鹿喜欢金光的或者银光的,至少也要红的,不过只好将就啦,青绿地干活。在实用中,PID有很多表兄弟,帮着大表哥一块打天下。

比例控制的特点是:偏差大,控制作用就大。但在实际中有时还嫌不够,最好偏差大的时候,比例增益也大,进一步加强对大偏差的矫正作用,及早把系统拉回到设定值附近;偏差小的时候,当然就不用那么急吼吼,慢慢来就行,所以增益小一点,加强稳定性。这就是双增益PID(也叫双模式PID)的起源。想想也对,高射炮瞄准敌机是一个控制问题。如果炮管还指向离目标很远的角度,那应该先尽快地把炮管转到目标角度附近,动作猛一点才好;但炮管指向已经目标很近了,就要再慢慢地精细瞄准。工业上也有很多类似的问题。双增益PID的一个特例是死区PID(PID with dead band),小偏差时的增益为零,也就是说,测量值和设定值相差不大的时候,就随他去,不用控制。这在大型缓冲容器的液位控制里用得很多。本来缓冲容器就是缓冲流量变化的,液位到底控制在什么地方并不紧要,只要不是太高或太低就行。但是,从缓冲容器流向下游装置的流量要尽可能稳定,否则下游装置会受到不必要的扰动。死区PID对这样的控制问题是最合适的。但是天下没有免费的午餐。死区PID的前提是液位在一般情况下会“自动”稳定在死区内,如果死区设置不当,或系统经常受到大幅度的扰动,死区内的“无控”状态会导致液位不受限制地向死区边界“挺进”,最后进入“受控”区时,控制作用过火,液位向相反方向不受限制地“挺进”,最后的结果是液位永远在死区的两端振荡,而永远不会稳定下来,业内叫hunting(打猎?打什么?打鹿?)。双增益PID也有同样的问题,只是比死区PID好一些,毕竟只有“强控制”和“弱控制”的差别,而没有“无控区”。在实用中,双增益的内外增益差别小于2:1没有多大意义,大于5:1就要注意上述的持续振荡或hunting的问题。

双增益或死区PID的问题在于增益的变化是不连续的,控制作用在死区边界上有一个突然的变化,容易诱发系统的不利响应,平方误差PID就没有这个问题。误差一经平方,控制量对误差的曲线就成了抛物线,同样达到“小偏差小增益、大偏差大增益”的效果,还没有和突然的不连续的增益变化。但是误差平方有两个问题:一是误差接近于零的时候,增益也接近于零,回到上面死区PID的问题;二是很难控制抛物线的具体形状,或者说,很难制定增益在什么地方拐弯。对于第一个问题,可以在误差平方PID上加一个基本的线性PID,是零误差是增益不为零;对于后一个问题,就要用另外的模块计算一个连续变化的增益了。具体细节比较琐碎,将偏差送入一个分段线性化(也就是折线啦)的计算单元,然后将计算结果作为比例增益输出到PID控制器,折线的水平段就对应予不同的增益,而连接不同的水平段的斜线就对应于增益的连续变化。通过设置水平段和斜线段的折点,可以任意调整变增益的曲线。要是“野心”大一点,再加几个计算单元,可以做出不对称的增益,也就是升温时增益低一点,降温时增益高一点,以处理加热过程中常见的升温快、降温慢的问题。

双增益或误差平方都是在比例增益上作文章,同样的勾当也可以用在积分和微分上。更极端的一种PID规律叫积分分离PID,其思路是这样的:比例控制的稳定性好,响应快,所以偏差大的时候,把PID中的积分关闭掉;偏差小的时候,精细调整、消除余差是主要问题,所以减弱甚至关闭比例作用,而积分作用切入控制。概念是好的,但具体实施的时候,有很多无扰动切换的问题。

这些变态的PID在理论上很难分析系统的稳定性,但在实用中解决了很多困难的问题。大言不惭一句,这些PID本人在实际中都用过。

元宝推荐:四月一日,
家园 应该没有

华化的邵惠鹤老师倒是在90年代初去了交大。

好奇一下,蒋先生应该也是晨枫大哥的老师吧?

家园 送花。。。
家园 不见得,老夫亦学过这些(根轨迹,奈奎斯特),但专业与自控差得远呢
家园 花 too!
家园 刚发出去,就想起来此邵非彼邵

我确实把邵惠鹤和邵世煌搞混了。二十年前就搞混,二十年后还搞混,该打。邵惠鹤是我老师,他的课上得极漂亮;和邵世煌同过一小段事,他是电自的,我是化自的。

蒋老先生是我导师,老先生的教益受益终生,出国后也见识过洋教授,可以和蒋老先生相比的寥寥无几。可惜老先生现在身体不好,上次回国都没有见着。

量子兄对自动化的行当很熟悉啊,我们认识吗?我是77的。

家园 晨枫大哥这么称呼可不敢当

您可是前辈了。

蒋先生我见过几次,还合过影。老先生个子很高,人也特别nice。

我一直念控制,所以国内国外行内的人和事还知道一些吧。不过我是控制理论这一边的,对过控不是很熟悉。应该没有见过晨枫大哥吧,不过可能读过你的论文。。。

全看树展主题 · 分页首页 上页
/ 33
下页 末页


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河