五千年(敝帚自珍)

主题:揭密西部科学城:绵阳(之一)。 -- 桃源客

共:💬28 🌺234
全看分页树展 · 主题 跟帖
家园 核武器储备管理计划的重要一环。

近年来,美国境内的核武制造基础设施多半遭到拆除,硕果仅存的核武设施也侧重于拆卸多余的核弹,或是维修现有核弹以延长其寿命,这也是核武器储备管理(Stockpile stewardship)项目的主要工作。核武器储备管理计划集合了能源部下属包括洛斯阿拉莫斯(Los Alamos)、桑迪亚(Sandia)和劳伦斯利物莫(Lawrence Livermore)等国家实验室,雇佣约27500名员工,每年花费动辄数十亿美元。

有关NIF和核武器储备管理计划的关系详见以下介绍(无暇翻译,请见谅):

Stockpile Stewardship

The term "stockpile stewardship" refers to core competencies in activities associated with research, design, development and testing of nuclear weapons and the assessment and certification of their safety and reliability under a Comprehensive Test Ban Treaty. Historically, these activities have been performed at the three Target Positioner and Alignment System. Department of Energy (now National Nuclear Security Administration) weapons laboratories – Los Alamos National Laboratory in New Mexico, Lawrence Livermore National Laboratory (LLNL) in California and Sandia National Laboratories in New Mexico and California – and the Nevada Test Site.

In response to the end of the Cold War and changes in the world's political regimes, the emphasis of the United States nuclear weapons program has shifted dramatically from developing and producing new-design weapons to dismantlement and maintenance of a smaller enduring stockpile. In accordance with national security policy, including the terms of the Strategic Arms Reduction Talk (START) treaties and the 2003 Treaty of Moscow signed by Presidents Bush and Putin, the nuclear weapons stockpile is being significantly reduced. Additionally, in 1992, the United States declared a moratorium on underground nuclear testing. To date all U.S. presidents have observed this moratorium and President Clinton decided, in August 1995, to pursue a "zero-yield" Comprehensive Test Ban Treaty that he signed in September 1996.

NIF's Unique Contribution to Stockpile Stewardship

NIF is an essential component of the U.S. stockpile assessment and certification strategy. NIF is crucial to the Stockpile Stewardship Program because it is the only facility that can create the conditions of extreme temperature and pressure – conditions that exist only in stars or in thermonuclear reactions – that are relevant to understanding the operation of our modern nuclear weapons. In addition, NIF is the only facility that can create fusion ignition and thermonuclear burn in the laboratory. Nuclear fusion is the process that modern nuclear weapons use to achieve their immense energy. The understanding of these conditions and the data provided by NIF will allow the nation's nuclear stewards to assess and certify the aging stockpile without actual nuclear tests using supercomputer modeling tools. Data from NIF experiments validate computer codes that simulate weapons processes.

NIF will help further DOE's stockpile stewardship goals by:

* Assessing the reliability of the existing stockpile. NIF experiments will investigate the physics regimes associated with weapons effects, radiation transport, secondary implosion, ignition and output. These processes occur at extremely high temperatures and pressures, conditions achievable only on NIF.

* Maintaining the skills of present nuclear weapons scientists who can assess the aging-related conditions that compromise the reliability of nuclear weapons.

* Supporting U.S. nuclear nonproliferation goals.

关键词(Tags): #国防科技
全看分页树展 · 主题 跟帖


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河