五千年(敝帚自珍)

主题:【原创】疯狂科学家的公式化生存(一) -- 游识猷

共:💬77 🌺511
分页树展主题 · 全看首页 上页
/ 6
下页 末页
  • 家园 【原创】疯狂科学家的公式化生存(一)

    看不到图的翻墙河友可以直接在墙内看松鼠会的链接——

    http://songshuhui.net/archives/39756.html

    这个世界在你眼中是何面目?每个人的答案必定都有所不同。真实的世界已经被我们每个人的感知加以精简提炼,而足够疯狂的科学家又能把感知传来的信息再度抽象成一个个公式。最近煎蛋(http://jandan.net/2010/06/21/how-scientists-see-the-world.html)上就转载了一幅非常有趣的漫画,题为《科学家是怎样看待世界的?》。

    点看全图

    外链图片需谨慎,可能会被源头改

    这幅漫画的原图来自博客Abstruse Goose ,http://abstrusegoose.com/。原图的右下角还可以找到作者的签名——全玄鸿。

    在漫画底下,全玄鸿还引述了美国天文学家兼科普作家卡尔·萨根(Carl Sagan)的名言:“科学与其说是大量知识的汇总,不如说是一种思考方式。”(Science is a way of thinking much more than it is a body of knowledge.)

    假如你看了这幅图后大感兴趣,也想“借我借我一双慧眼吧”,就让我们试着用这名疯狂科学家的双眼(与思维)来好好“把这世界看个清清楚楚明明白白真真切切”。

    点看全图

    外链图片需谨慎,可能会被源头改

    所谓科学家,就是专从司空见惯的日常生活中琢磨门门道道的人。知其然,更要知其所以然,于是他们折腾出了一门门学科——

    核物理学

    看到太阳发光发热是不够的,还要知道是什么支撑着我们赖以生存的生命之源始终向外辐射着能量。

    反应式1实际上就是在太阳核心所发生的核聚变反应方程式。:两个轻核聚合成一个重核,在此过程中损失质量,根据爱因斯坦的著名方程E=mc2, 损失的质量转化为能量放出。太阳以及比太阳轻的恒星中主要发生的是质子-质子链反应(PP链反应),反应分三步骤。首先两个氢原子聚变成一个氘,同时释放出一个正电子、一个中微子与能量——这一步骤速度特别特别缓慢,不过也正因如此,据NASA估算,太阳在已经燃烧的45亿年中,才不过消耗了自身质量的0.03%。

    紧接着,一个氢原子加一个氘聚集成一个较轻的氦同位素(氦-3),释放出的能量以γ射线的形式被光子带走。

    最后一步反应有四种可能的路径——pp1、pp2、pp3、pp4——来形成氦的较重同位素。在太阳中,占所有反应86%的主流路径就是漫画里列出的pp1分支,氦-4(4He)由两个融合而成,并释放出两个质子外加大量能量。

    经典电磁学

    我们天天被光所包围。但光是什么?荷兰的惠更斯说,光是波动。牛顿说,胡说,光是微粒。爱因斯坦说,你俩都错了,光有波粒二象性,于是爱因斯坦捧走了诺贝尔物理学奖。

    惠更斯:……

    牛顿:…………

    牛顿的老乡,物理学家麦克斯韦挠挠头想了想,说:既然有波粒二象性,那光表现为电磁波时,就得服从我的麦克斯韦方程组。

    编号为2的四个方程,就是麦克斯韦方程组(Maxwell’s equations)的微分形式。

    点看全图

    外链图片需谨慎,可能会被源头改

    麦克斯韦在19世纪建立了这一组方程,用来描述空间某区域中的电磁场量(D、E、B、H)与电荷密度(ρ)、电流密度(J)之间的关系。四个方程分别回答了如下四个命题:电荷如何产生电场(高斯定理);磁单极子不存在(高斯磁定律);电流和变化的电场怎样产生磁场(麦克斯韦-安培定律),以及变化的磁场如何产生电场(法拉第电磁感应定律)。

    经典物理学与相对论物理学

    地球缘何会绕着太阳旋转,而非孤独冰冷地向宇宙边缘独行?

    太阳底下编号为3的两个公式就在以各自的角度阐述这个问题。它们分别是牛顿的万有引力定律(law of gravitation)与爱因斯坦引力场方程式(Einstein field equation)。

    传说当年一颗苹果落下,砸出了牛顿君的万有引力定律,万有引力是自然界四大基本相互作用之一,另外三种分别是电磁相互作用、弱相互作用及强相互作用。牛顿发现。任何物体之间都有相互吸引力,力的大小与各个物体的质量成正比,而与它们之间距离的平方成反比。如果用m1、m2表示两个物体的质量,r表示它们间的距离,则物体间相互吸引力可被写成公式如下——

    点看全图

    外链图片需谨慎,可能会被源头改

    话说十七世纪,牛顿的这个万有引力帖子一出,那是万国来朝,贴了几百年,众回帖者只有赞的没有弹的。直到二十世纪初,有人踢馆来了。

    爱因斯坦:你当初推导这个方程时其实有个隐含假设,认为引力在宇宙间传播不需要时间,即相当于引力的速度是无限的。但引力传播的速度不可能超过光速,所以你又错了。(咦,我为什么要说又?)

    牛顿:……How old are you?(怎么老是你?)

    爱因斯坦:其实引力不是原因。引力是时空局域几何性质的表现。你测量到的所谓引力导致的天体运行轨道弯曲是缘于物质对四元时空的扭曲。这些在我的广义相对论中都有提及。

    点看全图

    外链图片需谨慎,可能会被源头改

    牛顿:……

    爱因斯坦:请看我的场公式,它更完美地解决了水星近日点的进动问题——

    点看全图

    外链图片需谨慎,可能会被源头改

    牛顿:…………既生牛,何生爱!

    总之,在牛顿创立的经典力学独领风骚几百年后,爱因斯坦创立的相对论因为能更好地解释宇宙间的一些现象而取而代之。所谓科学理论,就是可以不断证伪与修正的理论。没有最佳,只有更佳。

    游识猷:【原创】疯狂科学家的公式化生存(二)

    游识猷:【原创】疯狂科学家的公式化生存(三)

    强烈推荐此回帖

    冷原子:好文章,请允许鸡蛋里挑两个骨头

    关键词(Tags): #公式化生存(当生)#核物理学(当生)#经典电磁学(当生)#相对论(当生)元宝推荐:水风,海天,不爱吱声,铁手, 通宝推:厚积薄发,Wjwu,踢细胞,一条溺水的鱼,路边,iedgar,一无所之,海天,柳叶刀,njyd,穿越,xtqntd,

    本帖一共被 1 帖 引用 (帖内工具实现)
    • 家园 hua!
    • 家园 尾二的图是什么來的?

      点看全图

      外链图片需谨慎,可能会被源头改
      有人能給我科普一下嗎? 謝謝

      • 家园 俩黑洞周围的引力场,数值解

        这儿还有一个动画, NASA Goddard的数值模拟.

        http://www.nasa.gov/vision/universe/starsgalaxies/gwave.html

        两个黑洞相互绕着转会发出引力波,而双黑洞系统是现有技术下最有可能被直接观测到的引力波源.随着引力波辐射带走轨道运动的能量,俩黑洞会越来越近直至合并.这大概是宇宙中除宇宙本身诞生之外最剧烈的事件了.

        一帮物理学家想通过数值方法解广义相对论的Einstein场方程得到双黑洞合并的所有细节,尤其是引力波辐射的形态.这对于直接观测引力波有至关重要的意义.前二十年的努力多数是在漆黑一片中瞎忙.直到2000年左右大家才搞明白数值方法方面的几个关键问题.到2005-2006年,三个研究小组用两种完全不同的方法达成突破,完成了第一批成功的数值模拟.此图和上面的动画就来自其中一组数值解.

        • 家园 说的太好了

          我听说“数值广义相对论”这个小方向从2005年以后变得比较热门,是因为你说的这个突破吗?

          另外还想请教一下,数值解爱因斯坦场方程的难点在什么地方呢?我相信肯定是来源于非线性,但是具体点儿说呢?后来他们怎么突破的?

          • 家园 【原创】数值解爱因斯坦场方程为啥难

            我听说“数值广义相对论”这个小方向从2005年以后变得比较热门,是因为你说的这个突破吗?

            没错,就是因为2005-2006年的这个突破。第一个成功的数值模拟是Caltech的一个博士后几乎单枪匹马完成的。近几年来,数值相对论产生了许多重要结果,既包括相对论或引力物理方向的,也包括天体与高能物理方向的。竞争也一度白热化,曾发生几个小组在某会议前三天争相在物理学评论快报上就同一问题灌水的事儿。

            另外还想请教一下,数值解爱因斯坦场方程的难点在什么地方呢?我相信肯定是来源于非线性,但是具体点儿说呢?后来他们怎么突破的?

            这个我也不太懂,随便说说。

            的确,非线性是导致数值解爱因斯坦场方程非常困难的根本原因。数值解非线性偏微分方程本身是个大问题。我的理解是,非线性系统的解对初始条件十分敏感。对于混沌的非线性系统,著名的例子就是“蝴蝶效应”:当初始条件无法严格确定的时候,系统的长期演化是不可预测的。即便对于那些不混沌的非线性系统,当初始条件有偏差时,这个偏差通常也会随时间以指数速度放大,导致初条件失之毫厘而结果谬以千里。

            由于数值计算只能实现有限精度,舍入误差不可避免。如果这些误差不受控制的随非线性系统演化,结果可想而知。

            不过仅就非线性带来的困难而言,爱因斯坦场方程也未见得就比著名的磁流体力学方程更吓人。导致数值解爱因斯坦场方程成为极端难题的是非线性系统的共性与广义相对论的个性的结合。爱因斯坦场方程的解是个场(废话)。这个场描述的不是流体的密度、电磁场的强度之类的普通角色,而是时空的几何结构。在广义相对论中,不但物质与能量的发展变化是统一的,物质能量与时空的演化也是一体的。正如 John Archibald Wheeler 教导我们的:

            Spacetime tells matter how to move; matter tells spacetime how to curve.

            在此,时空不再是物质世界永恒不变的背景,它是物质世界本身。具体到工作在数值相对论领域的物理学家们,空间如何延展,时间如何流逝,都是他们在演化爱因斯坦场方程时随时要澄清的。当这些对经验直观产生挑战的微妙问题与方程本身的非线性特性结合时,产生了一系列(以下的例子均为道听途说和个人理解)。

            一,数学没跟上的代价。

            为了进行数值演化,爱因斯坦场方程要被改写成一组(几十个)一阶偏微分方程,而为了保证解的稳定性这个偏微分方程组必须构成一个双曲的柯西问题。不管后半句是啥意思,总之人们直到2000年左右才搞清楚这一点,并意识到大家几乎白忙了快二十年。

            二,黑洞中心的奇点怎么办?

            所有物理量在奇点都是无穷大,这怎么搞数值模拟呢?根据两种不同数值方法的采用,两种方案产生了。

            第一帮人用的是标准的有限元法,朴实无华,程序相对简单,不过运行速度较慢。他们说,奇点不用担心,只要奇点不恰好运行到坐标格点附近估计就没事儿。如果奇点接近了坐标格点,稍微挪挪格点们就成。信不信由你,这么搞居然成功了,尽管事后几年人们才逐渐理解为什么会成功。

            第二帮人用的是波谱法(pseudo spectral method),程序复杂但运行速度极快。不幸的是,直至目前,他们省下来的运行时间基本上都用来写程序了。他们说,物理量变化越平缓光滑波谱法越牛,甭说奇点本身,就是靠近奇点我们都受不了。我们必须把奇点从计算区域中扣掉,并在扣除的边界上加适当的边界条件。事实证明,加边界条件不难,不过尾随奇点的运动并扣掉适当的区域可费了大劲了。至今波谱法程序还时常受此困扰。

            三,动态的规范(guage)条件。

            这个类似于坐标系的选取。对同一个问题,我们可以自由的选取不同的坐标系,写出不同坐标系下长相不同的方程组,解出不同的数值解,不过有一点可以肯定,我们最终会得到同样的物理过程,同样的因果关系,否则一定有人算错了。你可以把东改成叫“西”,把西改成叫“东”,太阳该从哪边升起还是从哪边升起。当然,恰当的选取坐标系可以极大的简化计算。一个球对称的系统你非要用直角坐标那是找事儿。规范自由度与之类似,有些计算中自由度的选取不影响物理结果本身。在此我以电磁场方程作个类比。如果你对洛伦兹规范这个名称不陌生的话大概也会记得麦克斯韦方程组在这个规范下可以写成一个多么简洁而对称的形式。在解爱因斯坦场方程的过程中,恰当的选取规范条件不但可以简化计算,更是决定成败的关键。

            还是以坐标系的选取为例,对于一个球对称的史瓦西黑洞,我们自然是选取球坐标来描述。可是越接近视界的地方,引力场越强,时空的扭曲也越强。视界的位置上,时空度规变成无穷大,时间与空间发生”反转“,这看似是奇点。其实这只是坐标奇点,是由于不恰当的坐标选取造成的。如果我们选取爱丁顿坐标就会发现,在视界的位置上没有任何物理量是无穷大。可见,一个以平时经验看来自然而然的坐标选择当遇到黑洞这种极端环境时,随时可能产生意想不到的问题。更何况这还是面对一个独自静止的最简单的黑洞。想象一下两个黑洞绕在一起的情形,强烈的时空扭曲不断变化,任何初始选取的坐标系统都会迅速和自身纠缠在一起,产生坐标奇点。必须有办法随着双黑洞系统的演化动态的调整坐标和规范的选择。

            四,艰难的满足约束。

            在此我再以电磁场方程作类比。游MM列出了麦克斯韦方程组(Maxwell’s equations)的微分形式。盯着方程仔细看,第一个和第三个是一类,没有对时间的微分。也就是说,它们描述了电磁场在任何时刻都必须满足的约束,但不描述电磁场如何随时间演化。另两个方程自然就是演化方程了。如果一组初始条件满足了约束方程并依照演化方程演化,则麦克斯韦方程组保证它们在演化过程中的任何时刻都依然满足约束方程(坚持读到这的同学可以自行验证)。这其实也是废话。如果满足某个理论约束的系统依照这个理论的要求演化,演化着演化着就不再满足这个理论自己要求的约束了,这个理论就只有悲剧了,它逻辑上不自洽。

            一样地道理,不过更复杂些,爱因斯坦场方程也有自洽的约束部分和演化部分。不同的是数值误差在麦克斯韦电磁场方程和爱因斯坦引力场方程中的行为。由于舍入误差不可避免,约束在数值演化中不可能严格满足。违反约束的部分起初是与数值精度大小相仿的微小误差。在线性的麦克斯韦电磁场方程中,它们随时间演化但绝对大小几乎不变,而且可以被单独分析。在非线性的爱因斯坦引力场方程中,它们随时间以指数增大并以光速甚至超光速在数值模拟区域内四处乱窜,打在边界上还会到处乱弹,难以被追踪控制。它们爆炸性的增大立即导致计算机的溢出错误,扼杀了刚刚起步的数值模拟。人们试图用各种算法追踪并控制违反约束的部分,但每每发现加了复杂控制系统的程序通常死的更快。误差导致的疯狂扭曲的时空看来总是比人们狡诈一些。

            这实际上是最后被解决的问题,也导致了最终的突破。2005年,上文提到的那位博士后使用了广义和谐规范(generalized harmonic guage,中文听起来很强大)改写他的方程组并取得了成功。广义和谐规范在方程组中引入了一些平时没用的项,因为如果约束被满足,这些项都是零。但当违反约束的部分出现时,这些项会让它们产生自阻尼效果,以致违反约束的部分越大,它们对自己的抑制就越强。由于抑制是违反约束的部分自己产生的,它永远不会像人工控制那样被违反约束的部分欺骗。这也再次表明了恰当的规范选择不仅带来便利,更是成败关键。

            五,边界条件的选取。

            上面说过加边界条件不难,这是指在黑洞位置上被挖去奇点的内边界。由于视界的存在,黑洞内部的边界条件最简单:有出没进,只能从模拟区域流向黑洞中心,不能从黑洞中流进模拟区域。远处的边界条件就复杂些,既要允许符合物理要求的出入条件,又要保证违反约束的部分只出不进还没有反弹。

            我知道的大概就这些。最后说一下,双黑洞系统的演化还相对简单些,因为系统中只有纯时空曲率而无普通意义上的物质。现有的热门问题之一是数值模拟一个中子星(脉冲星)被黑洞吞噬或被黑洞的强大潮汐力撕碎。这很可能是伽马射线爆发的机制,也是很有希望被发现的引力波源。就数值方法来说,这也很有挑战性:爱因斯坦场方程和磁流体力学方程这两大难凑在一起了。

            元宝推荐:游识猷, 通宝推:厚积薄发,水风,深夜腌的萝卜丝,冷原子,

            本帖一共被 5 帖 引用 (帖内工具实现)
            • 家园 麦克斯韦方程组不是按含不含时间偏导分类的,而是按含不含源

              两个只含电磁场的算一组,表明电磁场是一个四维时空中的矢量场;含源(电荷密度和电流密度)的两个算一组,描写(带电或者带磁)物质对电磁场的作用,因此这四个方程是不完备的——缺少描写(带电或者带磁)物质的运动的方程。

            • 家园 俺看不懂

              因为看不懂,所以要推荐。

              通宝推:水随天去秋无际,
            • 家园 在实验上可以证验证吗?

              请问除了数学上的检验,这些数值解能在天体物理上验证吗?

            • 家园 多谢你这么详尽的解释

              说得非常清楚。老兄是这个方向的专业人士吧。

              广义和谐规范在方程组中引入了一些平时没用的项,因为如果约束被满足,这些项都是零。但当违反约束的部分出现时,这些项会让它们产生自阻尼效果,以致违反约束的部分越大,它们对自己的抑制就越强。

              这是非常巧妙的想法。同时也再一次说明,上帝在对我们关上一扇门的同时,也必定在不知什么地方打开了一扇窗。

    • 家园 游MM居然是松鼠会的?
分页树展主题 · 全看首页 上页
/ 6
下页 末页


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河