主题:【文摘】相对论通俗演义 -- 不爱吱声
第十六章 伯克霍夫定理
(1)
史瓦西解是真空爱因斯坦方程的球对称解,于是,有一个很自然的问题就是,真空爱因斯坦方程的球对称解是不是一定是史瓦西解?答案是肯定的,这就是著名的伯克霍夫(Birkhoff)定理。Birkhoff生前来过中国,他是一个美国数学家。要想在直观上理解伯克霍夫定理,不是一件容易的事情。史瓦西解实际上不是覆盖整个时空的,它的外部解大致可以描述太阳外部的时空弯曲的情况,假如不考虑太阳的自转。这个解很有实际意义,因为地球运行在被史瓦西解刻画的时空之中。这样的时空到底有性质呢?地球每一年绕着太阳转一圈,它的轨道每年都几乎是一样的――这一点很重要,假如地球和太阳之间的距离,是随着时间而变化的,换句话说,假如地球一会儿离太阳很近,热得要死,一会儿又离太阳很远,冷得要死,那么,这样的时空就不是我们所熟悉的史瓦西解所刻画的时空了。史瓦西解刻画的空间不随着时间演变,大致地称这样的时空为静态时空。当然这是一个很不严格的说法,在几何意义上,要想定义静态时空,首先要定义稳态时空。
稳态时空的定义是说,时空区域存在一个处处类时的killing矢量场。这相当于说,度量演时间平移不变,也就是时空具有时间平移的不变性。粗率地说就是存在这样的度量矩阵,使得这个矩阵的各个分量对时间求导全是零,如果是这样,人们就说,时空是稳态的。如果时空不但稳态,而且存在与该类时killing矢量场正交的超曲面,那么,这个时空就是静态时空,不但具有时间平移不变性,而且具有时间反演不变性。
史瓦西外部(r>2M时)线元:
ds^2=-(1-2M/r)(dt^2)+1/(1-2M/r)(dr^2) +(r^2)[dθ^2+(sinθ)^2(dφ)^2]
观察一下这个度量,坐标t是时间吗?抑或r是时间?因为是外部解,r>2M,所以线元的第一项是负的,第一项表示时间项,也就是说坐标t是时间。那么,度量矩阵的各个分量对时间求导全是零,可见,史瓦西外部是稳态的。而要判定它是不是静态的,就需要证明这个类时killing矢量场是超曲面正交的,在数学上有复杂性,原则上就是用到微分几何的佛罗般尼斯定理。
非常粗拙地说:证明一个矢量场与一个超曲面正交,还有一些可能是思路,比如要证明某矢量场与一个二维球面处处正交,可以用反证法,假定这个矢量场与球面相交处处有切分量,于是在球面上就有光滑的切矢量场,但这些切分量不可能光滑地布满整个二维球面――原因是因为Hopf―poincare的指数定理,于是,只好让所有的切分量全退化,那么,这个矢量场就与二维球面处处正交了。
(2)
已知了静态时空的定义,回头来看宇宙,因为宇宙是不是静态的,这是一个很重要而且迫切的问题,爱因斯坦曾经有一段时间,深受牛顿等人的影响,认为宇宙是静态的,或者说,爱因斯坦那样深刻的人,也曾经错误地认为,宇宙是一个存在,它亘古不变。
勒梅特(Lemaitre.Georges)生于1894年,在中国来讲当时正好是中日甲午战争时代,他后来是比利时的天文学家和宇宙学家,提出了现代大爆炸理论。他的理论认为宇宙开始于一个小的原始“超原子”的灾变性爆炸。后来他的这个理论被伽莫夫所发展,大爆炸宇宙论的影响力空前高涨。第一次世界大战爆发了,年轻的勒梅特作为土木工程师在比利时军队中担任炮兵军官。战后,他进入神学院并在1923年接受神职,担任司铎,也就是一个神甫,故事也就在这个时候,要开始了,历史选择了他来拉开现代宇宙论的帷幕,作为一个神甫,他可能有一个考虑,就是要证明上帝创世。1923年,也是美国加洲维金森山天文台上的哈勃开始观察到星系红移的时刻。1923年和1924年间,他在剑桥大学太阳物理实验室学习,后来又到美国麻省理工学院学习,在那里他了解了美国天文学家哈勃的发现和H.沙普利有关宇宙膨胀的研究。他在1927年任卢万大学天体物理学教授时,正式地提出宇宙大爆炸理论,用这一理论,哈勃发现的星系的退行可以在爱因斯坦广义相对论框架内得到解释。当时的爱因斯坦还是不相信勒梅特的理论,他认为勒梅特的物理不行。但是到了1931年,爱因斯坦已经确定知道是错了,于是他去了加洲,会见了哈勃和勒梅特。会见结束了,爱因斯坦认为,这是他一生最愉悦的会面,他接受了勒梅特的大爆炸宇宙学说。爱因斯坦再次认为,自己在爱因斯坦方程里引进宇宙学常数,这是他一生最大的错误。
这已经是很久以前的事情了,现在看来,大爆炸宇宙模型在大方向上完全是正确的。而用来描述大爆炸之后的宇宙,最好的度量就是RW度量,当然因为富里德曼在1922年就从爱因斯坦方程里解出了非静态的宇宙,所以这个度量又被称为FRW度量。可是,当时的富里德曼把论文投出去的时候,爱因斯坦是审稿人,他很快地枪决了富里德曼的论文,富里德曼写信申辩,爱因斯坦就不再管了,于是,富里德曼被埋没进了历史。
FRW度量描述我们的宇宙,这个度量把银河星系当作是尘埃。而星系之间的距离是在膨胀的,而至于星系内部,这种膨胀效应就是很小很小了。这因为这个原因,我们才没有感觉到太阳在渐渐地远离地球。星系之间的膨胀用哈勃定理描述,哈勃常数有一个几何解释。一个参考系也就是一个类时矢量场,一般有三个指标:膨胀,剪切,扭转,哈勃常数正是宇宙标准参考系的膨胀。这个类时矢量场的扭转为零,扭转为零的矢量场是超曲面正交的,这个超曲面,正是我们宇宙的空间部分。
- 相关回复 上下关系8
😁虽然不太懂 九九 字32 2006-01-10 03:21:46
虽然不太懂,请坚持到底。 军81877 字0 2006-01-18 19:24:37
在等不爱版主包子前,先让大伙温习一下,呵呵! 孤子 字18 2006-01-08 21:29:13
【文摘】第十六章 伯克霍夫定理
【文摘】第十五章 史瓦西解 1 不爱吱声 字5260 2005-03-11 19:48:07
【文摘】第十四章 中子星的辉芒 不爱吱声 字7051 2005-03-08 01:41:14
【文摘】第十三章 钱德拉塞卡 不爱吱声 字3244 2005-03-01 11:29:12
【文摘】第十二章 黑洞的惊鸿一瞥 1 不爱吱声 字3373 2005-02-28 10:04:51