五千年(敝帚自珍)

主题:【文摘】相对论通俗演义 -- 不爱吱声

共:💬54 🌺31
分页树展主题 · 全看首页 上页
/ 4
下页 末页
    • 家园 很长,我已经不太能够看懂了

      我大学时物理还挺好的呢

      不过想说一下我理解的一个观点:时空是物质运动的存在形式,离开了物质,似乎就不再有什么时空了~~~~,不知道对不对?

      这好象是哲学观点,好象还是马克思等的观点。 我深信这一点。

      哎,科学和信仰~~~~,

    • 家园 很好的文章,很可惜我看不懂
      • 家园 好办

        不就是让人不懂吗?咱们也搞‘生化’武器,放翻他们‘无理数’。

        催帐,师兄的生命系列为啥不继续了?

        • 好办
          家园 有道理,你有空的话多写写,我给你擂鼓助威

          我觉得既然写,就是为了让大家明白。不是写给自己看的。如果看不懂,那还不如不写。

          至于我实在是写不下去了,原因是最近看到一些新的进展,很有意思,但是实在没有时间去细究。把老的东西写出来又觉得不好意思。只好先放着。

          而且看完萨苏的文章,实在是不敢再提笔写什么了。

    • 家园 【文摘】第十章 宇宙学之一

      第十章 宇宙学之一

      (1)

      爱因斯坦把他的方程写出来以后,开始考虑的一件事情是如何从他的方程得到我们生活其中的宇宙。爱因斯坦的雄才大略在这一件事情上体现得淋漓尽致。这种气质在科学家中是极其少见的,赫胥利《天演论》第一句也有过类似的气质:“赫胥黎独处一室之中,在英伦之南,背山而面野,槛外诸境,历历如在机下。乃悬想二千年前,当罗马大将恺彻未到时,此间有何景物?计惟有天造草昧……” 爱因斯坦也是这样,他要在斗室之中,通晓天地之变,阴阳之道,但他用的是数学方法做《天演论》。

      广义相对论一直被誉为最美丽的理论,爱因斯坦也被认为是人类历史上最伟大的科学家,他一个人苦心孤诣地研究工作,为我们打开了认识神秘宇宙的大门。当然,与爱因斯坦的广义相对论有竞争的理论,为数也多如牛毛,排除一些地道的民间科学家的理论,这些理论之中,最重要的是班斯和迪克的标量张量理论,在他们那里,牛顿万有引力常数不再是一个常数,而是一个函数,这个想法是很自然的。函数也就是标量场,在广义相对论中,标量场神出鬼没,成就了一批又一批的文章。

      广义相对论中,最基本的是时空流形M和它上面的度量 g_ab。M在没有g_ab的时候,上面是没有距离概念的,也就是没有过去和未来。M仅仅是一个微分拓扑空间,可能把它想象成一个4维的自行车内胎或者篮球皮,等等等等。M上面具有光滑的微分结构。至于它上面有多少光滑的微分结构,这个问题就过于艰深了。一般地说,在最简单的平坦Minkowski流形上,有无穷多个微分结构。这个工作是得到Fields奖的。

      聪明而细心的看客马上会问,那么,M上的所有微分同胚变换是不是构成一个李群?答案是肯定的,但是,这个李群是无限维的,这有一点不象su(2)那样简单了,su(2)李群是3维的。这个问题背后有冗长的不厌其烦的计算和深刻的数学。在这里,注意力是集中的,我们要关心的是宇宙学。

      但是,宇宙是有时间的,为了定义时间,抛弃热力学时间箭头抑或电磁辐射时间箭头。在相对论里,度量 g_ab的号差是Lorentz的,也就是说,把度量看成一个4乘4的矩阵,在线性代数里面,有一个惯性定理,这个定理说,在相似变换下,矩阵的正负特征值的个数是不变的。度量是Lorentz的,相当说,特征值有一个是负的,其他三个是正的,写成(-,+,+,+)。其中,负号代表时间。

      是否每一个流形都可以配上一个Lorentz号差的度量?或者说存在整体定义的时间?时间作为一个矢量场整体存在,矢量场整体无奇点,指数为0.Hopf-poincare的指数定理说,指数和等于欧拉数。所以一个流形可以配上一个lorentz号差的度量,必然要求流形M的欧拉数为0。

      M的拓扑结构对g_ab的限制,这样的问题连爱因斯坦也没有考虑过。粗浅地说,这样的问题就好象是一个金饭碗,但你会解决这样的问题时候,这往往意味着你已经长大成人了,可以出去讨生活了,并且在一定程度上可以自我保证衣食无忧了。

      (2)

      w.pauli很年轻的时候,曾经一系列介绍相对论的文章,集中为写过一本书,叫《相对论》。这本书现在已经被人淡忘,往事不要再提,人生已多风雨。我有一本他的书,每每看到这本由内而外发黄的书,1920年的Pauli研究生在油灯下笔耕不辍的情景就跃然眼帘,让人不由得想起四字镏金大字:英雄时代!

      在本书中,相对论建立的1905年到1970年代霍金提出黑洞辐射,这短短的一甲子左右的光阴,我称之为“英雄时代”。这段时间中,量子力学也诞生了一大批人类精英。

      特仿人民英雄纪念碑的碑文一则:

        八九十年以来,在爱因斯坦理论中牺牲的英雄们永垂不朽!

        三四十年来,在Hawking和penrose的奇性理论中牺牲的人民英雄们永垂不朽!

        由此到廿一世纪初年,从现在起,为了理解广义相对论,争取人类精神独立和自由幸福,在历次斗争中牺牲的英雄们永垂不朽!

      Geroch等在1973年曾经证明了一个定理,说的是,如果时空(M,g-ab)是整体双曲的,那么,在拓扑上必然有M=RXE,其中,E是一个3流形,是类空的。这个定理的意思是说,假如你要有一个定义良好的初值问题,那么,时空的拓扑必须要是一个RXE。其中R就是时间,用参数t表征,每一个等t面是cauchy曲。这个定理,最直白的意思,就是想要给出了唯一的时间演化,“已知现在的情况,能够唯一确定未来。必须要有一个拓扑限制”,在这个意义上,这个定理对算命先生极其有利。但是可惜的是算命先生不是谦虚好学之人,多数不知道偏微分方程理论背后的巨大天机。

      在宇宙学上,人们往往不考虑违背Geroch1973年的这个定理的奇异的宇宙,例如拓扑为T4或者S4。因为人们相信,在宇宙之中,存在良好的因果关系,可以很好地处理初值问题。

      (3)

      哥白尼原理,也叫宇宙学原理,它说:我们的宇宙,在空间上是均匀的,各向同性的。这一个原理是有一定实验根据的,那就是微波背景辐射。当然这个背景也不是绝对均匀的。但在数学上,这样的空间就是具有最大对称性空间。

      人类生活在其中的宇宙,浩瀚神秘,每当仰望星空,很多人都会好奇,宇宙,到底是有限还是无限的,宇宙是不是自相似的具有分形结构,是否天圆地方,是否有沉睡在宇宙深处的黑暗能量,外星球有没有象人类同样的孤寂和智慧。在中国古代,就有《天问》的说法,问天问地,十分好奇的一种心态。

      目前的观测似乎说明,我们的宇宙3维空间部分具有最大对称性。单连通3流形具有最大对称性的,只有3种,E3,S3,H3。这个分类的结论与Thurston有联系。Thurston把单连通3维的几何体分成8种,前面的3种就是E3,S3,H3,允许6个独立killing场,具有最大对称;后面的5种分别为S2×S1, H2×S1, Sol, Nil 和 SL(2,R),允许3个独立killing场,具有均匀性(spatially homogeneous),但不具有各向同性。所有这一切的前提,全是研究单连通流形。至于不是单连通的,或者其他情景,只能让人归结到poincare猜想。这个问题是非常有趣的,顺带地,毕达哥拉斯最早知道,正多面体只有5种,这相当于冰山的一角,推广到高维空间,问有多少个超正多面体。冰山暴露出来,一定让很多人大吃一惊,这样的冰山,可以化神气的泰坦尼客为腐朽,把繁华变成南柯一梦。

      话说回来,我们的宇宙,在空间上是什么样子的呢?真的是E3,S3,H3的其中一种吗?罗伯逊和沃克RW度量描述了这3种情况。RW度量的给出,纯粹是从对称性的考虑和宇宙膨胀的事实中写出来的。这个RW度量不是真空爱因斯坦方程的解。

    • 家园 【文摘】第九章 黎曼曲率杂谈

      第九章 黎曼曲率杂谈

      (1)

      爱因斯坦方程横空出世了,求解这个方程变的很重要。爱因斯坦的方程是偏微分方程,它是几何和分析之间的桥梁,这个方程里面,最实质的内容就是黎曼曲率。需要求解的是度量函数,但求解一般不是轻易的事情。爱因斯坦曾经在一次纪念Maxwell的演讲时说:“偏微分方程进入理论物理的时候只是一个婢女,但现在已经是主妇。”其说法很容易让人想起中国古典名著《金瓶梅》。偏微分方程的理论,到现在还不是很成熟的。已经成熟的是代数方程,或者说是多项式方程。2的x次方加3的x次方等于1,这样的方程不算是代数方程。高斯证明了代数基本定理,说,n次代数方程f(n)=0,那么,它必然有n个复数根。但是真正求解n次代数方程,不是很简单的一件事情。

      历史上一点一滴进步,都凝固了前人的心血。即使历史善于遗忘,也难免记住一些英雄。方程论上最早的英雄塔塔里亚,他解决了三次方程,

      塔塔里亚活着的时候被人砍伤,成为哑巴。据说在意大利语中,塔塔里亚就是“口吃者”的意思。他第一个解答这样子的方程:

      x^3-21x^2+78x-55=0

      但塔塔里亚掌握了3次方程的解法,没有发表,每天压枕头底下暗爽,后来被人剽窃了。世道浇漓,剽窃的人成为当时该领域的学术带头人。塔塔里亚很是愤懑,1530年他约对方在米兰大教堂各出30道3次方程比赛,观者千人。结果是塔塔里亚大获全胜,对方一题未答,成为剽窃史上空前丑闻,也让后人引以为戒。解决了三次方程,很自然地就是解答更高次的方程。

      1824年,22岁的Abel自费出版了一个小册子,他证明了,n大于等于5的时候,n次代数方程一般没有根式解。Abel是挪威的数学家,是一个穷牧师的儿子,一生贫病交加,27岁时候死于肺结核。天才生于寒冷,他濒死去的时候,巴黎大学给他一个聘书,聘他去做教授,可是,Abel马上死去。Abel理论对后世有巨大的影响。

      天才是互相感应的,Abel死的前一年法国的19岁的伽罗华写了一论文给法兰西科学院。他用一个新的方法回答了能够根式求解的代数方程的条件。其文章太前卫,别人看起来有点南腔北调。投稿2次,人家竟然把原稿给丢失了。

      伽罗华是另外一个具有杰出才能的法国数学天才,他引起了群论的诞生。伽罗华比Abel更加富有传奇色彩,当时的法国巴黎各派政治意见不和,习惯卸下门板,在街道上筑起街垒,互扔石头。伽罗华是一个天才,他考巴黎著名的工科学校竟然2次没有考上,上了巴黎师范。后者在当时还不算是名校。伽罗华对政治感兴趣,他是一个镇长的儿子,很有实力。还曾经因为政治上反对波旁王朝“七月革命”而被学校开除,后来又因为政治入了监狱,再上了法庭,在法庭上,他说:“我们是孩子,我们精力充沛,勇往直前。”

      21岁的伽罗华在一天晚上,他答应与人决斗,在油灯下匆忙了写下了群论纲领。这个纲领也算是一个遗言,在某个地方他写道:我的时间不多了……

      第2天天才在决斗中牺牲。

      1932年5月的这天。

      一轮血红的残阳挂在某一个枯树的枝头。

      整个世界都快哭了。

      Abel和伽罗华全在年轻的时候离开人世,他们对数学的影响却无比深远。他们对天才的年轻人有很好的示范作用,特引用词一首,以表哀思:

      “原谅话也不讲半句此刻生命在凝聚

      过去你曾寻过某段失去了的声音

      落日远去人祈望留住青春的一刹

      风雨思念置身梦里总会有唏嘘

      若果他朝此生不可与你那管生命是无奈

      过去也曾尽诉往日心里爱的声音

      就像隔世人期望重拾当天的一切

      此世短暂转身步进萧刹了的空间

      只求望一望让爱火永远的高烧

      青春请你归来再伴我一会”

      挪威不是一个大国,但它出土了一流的数学家Abel,还有一个大名鼎鼎的是索飞斯?李。李发明的李群是相对论中的基本数学工具之一,很难想象一个不懂得李群的相对论专家会是什么样子。Bianchi对3维的李代数进行分类,发现有九种,这就是九个Bianchi宇宙。

      (2)

      李群也是微分流形,从微分流形的角度看它,会有一些直观的印象。比如SO(4)群,它是标准的三球面S^3上的等度量群。那么,什么是三球面呢?中学的几何学基本上都是研究2或者3维平直空间里面的几何学。一个点是0维的,一条直线是1维的,一个面是2维的,我们生活的空间是3维的。

      2维的面,很简单,有的看上去是弯曲的,比如篮球的表面,或者十三陵地宫里的巨大的圆木柱子的表皮――柱面。 但可以看到,一个柱面是可以用剪刀剪开,然后可以贴在平坦的墙壁上,所以,不太严格地说,柱面的内在的曲率是0,而球面显然不是这样的。球面的内禀曲率不是0,大概就是你不能用剪刀剪开它然后完全地贴到平坦墙壁上。

      我刚开始接触黎曼几何时,就是用上面的方法在强行理解“内在的曲率”的。

      但还是有一些问题,比方在纸上画一个扇形,然后把扇形卷起来用胶水把对边粘起来。那就是一个圆锥面。 显然圆锥面也是可以用剪刀剪开,然后可以贴在平坦的墙壁上,于是圆锥面的内在的曲率也是0。但它有一个尖点,那里不是光滑的,不能定义内在的曲率,应该排除。

      内在的曲率,实际上是指Riemann张量。

      那么什么是张量呢?这个东西不是一个容易理解的概念,它可以被放在坐标系下被确定下来。比如一块石头,从东边看它象一只猫,从西边看象一兔子,从南边看它象一个乌龟。那么这个石头的外形,就仿佛是一个张量。

      如果一个人试图研究一个正立方体沿着体对角线转动时候的动能,那么,转动惯量就是一个很好的例子。真正考虑这个问题并做过计算,甚至不断变换正立方体的转轴,张量,这个有点神秘的幽灵,会立刻象花朵一样开放在眼前。

      自行车的内胎。它的拓扑结构是一个二(维)环面,修车人生活在三维空间里,他看到的是这样一个中间有洞的东西。

      拓扑地看,一个自行车内胎与一个篮球皮有什么区别?自行车内胎上剪出一条封闭曲线不一定把它分成2块,但一个篮球面上剪一条封闭曲线一定把球面分成2块。这个暗示了球面与环面在拓扑上是不一样的。一个自行车的内胎实际上是一个柱面弯起来以后把2个头接起来产生的。看的出来,它就是一个圆周s1在另外一个圆周s1上走了一圈后得到的,所以有一个很直观的记号,环面T2=s1 x s1。(环面记做:s1 x s1。因为环面的英语是Torus。所以还可以把2维度的环面简单记为T2。)

      那么自行车内胎T2的内禀曲率是不是为0呢???很明显它用剪刀剪2次后是不能完全展成平直的,它不可以完全地贴在平坦的墙壁上。因此,在三维欧几里得平坦空间的自行车内胎,它不是处处内禀曲率为0。当这样说的时候,实际上背后的故事很是悠长。

      (3)

      在数学物理中,文献很多,有的研究者指导研究生写文章,集中多年精力做的事情就是把低维的情况推广到高维。第一个博士生从3维推到4维,第二个博士生从4维推到5维,年复一年。直到某一年,流年不利,有实力的博士生直接从3维推到n维。于是,这个事情算是彻底干净了。另起炉灶的时光来了。

      什么叫高维空间?人类生活的时空一般认为是4维的,但在string理论理论认为宇宙是10维的,有6个维度太小。譬如花园里面的一个很长的自来水管,它是柱面,当然是2维的,但远远地看,人们会以为那是一根1维的绳子呢!!人们感觉不到6个额外维度,但他们组成卡拉比-邱成桐空间。额外维是相对论研究的潮流之一,5维度的时空,也就是1920年代初期最早最原始的kluza-klein理论,具有统一引力和电磁力的神奇功能。5维的kluza-klein时空比人们的感觉到的4维的多出一个维度,多出了那一个维度非常之小。但电子在那里运动的时候就在4维时空表现出电荷来。这多少有点象看一个人在翻滚过山车,他身上有离心力的痕迹。

      到了20世纪末,lisa Randall等提出了膜宇宙模型,她们可以允许很大的额外维,这是后话。为了叙述的方便,n维的环面,记为T^n。n维的球面记为s^n。(因为球面的英文是sphere。)在后续的章节里,这样的记号会频繁使用,很多符号,全是可以类推的。

    • 家园 其他地方看到的,发新贴好象不值,就挂在您老大这篇下面了,大家轻松一下

      [先声明一下,这个实验不是我做的,大家的砖不要往我身上拍,谢谢先]

      爱因斯坦是个骗子,地球人超过光速行使不会回到从前,

      根据爱因斯坦的相对论,当物体以超光速前进时,时间就会倒流,能回到过去。

      但是,俺实验过了,这个理论并不对,

      昨天俺做了一个实验:

      在自行车的尾部装一个手电筒,手电筒向后照射,

      然后俺向前骑行,速度是10米/秒。

      那么相对于向后照射的手电筒,俺的最终速度就是

      自行车的速度10米/秒 + 手电筒的光速30万公里/秒 = 最终速度300000010米/秒,

      从而达到超光速前进。

      但是到了超光速后,俺发现俺并没有回到过去,时间也没有减慢。

      什么超出平常的物理现象都没有发生!

      由此实验可以得出结论,

      超光速飞行后时光并不能倒流!

      由此论证:爱因斯坦是骗子

      • 家园 所谓无知者无畏!

        在没有搞清楚相对论中所谓物体不能超光速的含义的情况下就声称相对论是错的,也算大无畏了!

        人们所感兴趣的超光速,一般是指超光速传递能量或者信息。根据狭义相对论,这种意义下的超光速旅行和超光速通讯一般是不可能的

        这种"速度"--两个运动物体之间相对于第三观察者的速度--可以超过光速。但是两个物体相对于彼此的运动速度并没有超过光速。因为相对论中,进行计算的时候用的是罗伦兹变换。并且遗憾的是,根本不能以这种方式超光速地传递信息。这根本不是真正意义上的超光速!

        请看下面这个帖子,里面提供了有哪些可能是真正意义的超光速。

        http://www.cchere.com/article/49460

        • 家园 【反驳】真正的超光速是存在的!

          不就是颠覆因果律吗?不就是传递信息吗?嘿嘿,Easy.

          以网恋为例:多少网恋都是先结束后再找理由。别说信息了,实物都能传递,包括耳光和拳脚。

          什么?你是说‘光线的速度’。抱歉,俺以为是‘光棍的速度’。

          对了,您能从那位老哥的‘手电自行车’测速实验中看到因果律吗?人家不是同时传递了自己‘无畏’的信息吗?所以人家其实已经实现了‘超光速’,咱们要尽量去理解,而不是去忌妒。

          在此,对不爱吱声提出批评。

        • 家园 受教了,一个问题想请教

          关于时间是如何定义的问题,好象直到现在,我也一直没有确切的弄明白时间到底是个什么东西。而且关于时间是个一维向量的唯一证据,好象也仅来自于热力学第二定律,也就是熵的定理。不知不爱兄可否给一个简单一些而容易理解的解释。

          同时关于超光速的问题,记得好象在哪里看到过一篇关于黑洞的文章,提到过黑洞其实也是在向外辐射能量(好象是霍金,记不清了)。提到了一种超越光速的方法。

    • 家园 【文摘】第八章 广义相对论

      第八章 广义相对论

      (1)

      狭义相对性原理说,“所有的惯性参考系中,物理规律是一样的。”基于狭义相对性原理和光速不变原理,爱因斯坦在1905年得到了狭义相对论。 一百年过去了,现在看来,狭义相对论是很自然的想法,因为4维平坦时空的Maxwell方程具有与生俱来的Lorentz协变性。但惯性系不是一个自然的概念。爱因斯坦不是一个普普通通的男人,他1908年左右做了一些光电效应这样的文章,然后继续回到相对论,决定抛弃惯性系。在物理学里,惯性系是一个有特权的王国,爱因斯坦想,这个物理世界应该是民主的,不应该存在具有特权的参考系。他有了这样的思想――姑且称之为“参考系的民主”。做M理论的人可能更加深刻,他们了解胡耳和汤森的思想:膜的民主。

      民主是一样好东西,近代中国在1919年开始了五四运动,疯狂追寻民主,这个运动的思想根源是新文化运动,当时人们大声疾呼“德先生”和“赛先生”,知识分子试图挽中国之狂澜于既倒。蔡元培希望请最大的“赛先生”爱因斯坦来中国讲学。那时,正是爱因斯坦和相对论名声大噪的时候。蔡元培通过各种渠道,一再邀请爱因斯坦访问中国,爱因斯坦也表示愿意访问中国。然而好事多磨,由于种种原因,爱因斯坦都未能成行。有的文章称:“直到1922年,事情才有了眉目。爱因斯坦将访问日本的消息传来,蔡元培又一次发出邀请。爱因斯坦也回信了,双方就访华的条件,协商了一下。蔡元培提出,如能到北大演讲,愿出酬金每月一千元。下榻处选在最高档的北京饭店。爱因斯坦倒也直率,他在回信中提出,每月一千元的酬金,数目尚可,但是要改成一千美元。住北京饭店,他是满意的,不过要按两人付费,也许他是考虑带夫人同行。一千美元的酬金,在当时是非常高的,因为那时爱因斯坦尚在德国,而德国‘马克’正在经历一场大贬值。对于一位在德国任职的科学家来说,即使是爱因斯坦这样的著名科学家,一千美元也不是一个小数。再说,北京饭店的客房也是以昂贵著称的。然而,蔡元培先生还是答应了爱因斯坦的这些条件。蔡元培认为,爱因斯坦如能光临北大,比什么鼎鼎大名的政治家、军事家都重要百倍!于是,北京饭店做了相关的准备,北京大学师生更是满腔热情、积极筹备,还特意组织了多场报告会,由丁西林等人讲解相对论,一时间掀起了一个宣传、普及相对论的高潮。可惜的是,由于种种原因,爱因斯坦最终未能访问北京,他只是在往返日本的途中,在上海停留了两天,就匆匆地走了。”这件事情到现在已经是昨夜黄花,但真相现在还有人在争论之中。可以肯定,爱因斯坦不是一个会轻易放人鸽子的人。

      回过头看,第一,万有引力的大小依赖于两个物体之间的空间间隔,但在四维几何里,3维空间间隔不是一个不变量;第二,万有引力定律与狭义相对论的矛盾水火不容。这个矛盾大致可以这样看出来,两个物体之间的空间间隔依赖于观察者,所以在不同的观察者看来,2个物体之间的万有引力大小依赖于观察者。这区别于库仑定律,在库仑定律中,除了电力还有磁力。

      万有引力定律对吗?狭义相对论对吗?爱因斯坦开始陷入了深深的思考。后来他意识到,应该抛弃惯性系了,他于是抛弃了惯性系。在一定意义上,下面三个原理是一致的:

      1。广义相对性原理。

      2。广义协变性原理。

      3。微分同胚不变性原理。

      到时候了,爱因斯坦提出了广义相对性原理,“所有的参考系中,物理规律是一样的。”

      1915年6,7月,他在阿廷根作了6次关于广义相对论的学术报告。同年11月提出广义相对论引力方程的完整形式,并且成功地解释了水星近日点运动。 1916年,3月他完成总结性论文《广义相对论的基础》, 广义相对论正式地出炉了!值得指出的是,数学家希尔伯特在爱因斯坦之前就推出了引力场方程,他说:“哥廷根大街的每一个小孩都比爱因斯坦更懂四维几何,但发明广义相对论的是爱因斯坦而不是数学家。”

      爱因斯坦方程是天人合一的典范,它的出世,表明纯粹理性具有非凡美感,人类心智,极富荣耀。

      G-ab=T-ab (3)

      在真空情景下,爱因斯坦方程可以写成:

      R-ab=0 (4)

      在有些情景下,人们处理带有宇宙项的爱因斯坦方程。

      爱因斯坦方程(3)的思想精髓众所周知:物质等于时空的弯曲。这一点是最重要的,如果问爱因斯坦理论最震撼人心的思想是什么,一半人会回答是等效原理,另外一半人会回答是物质等于时空的弯曲。真正思考过这个问题的人,多数会选择后者。

      有一个问题,是很自然的,假如没有物质,时空是不是会弯曲?很多人马上会讲,schwarzschild时空的外部解,没有物质,但是弯曲的。它是真空爱因斯坦方程的解。但注意,schwarzchild的外部不是闭的空间。真空爱因斯坦(4)引起了很多几何学家的兴趣。在某个时候,我还是一个年轻的大学本科学生,听S.T.Yau在中国科学院的一次公众演讲,他是当代最杰出的几何学家之一,他问:“是否存在一个闭空间,那里没有物质,但时空弯曲?”

分页树展主题 · 全看首页 上页
/ 4
下页 末页


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河