五千年(敝帚自珍)

主题:【原创】探讨科学如何对待“偶然”与“必然”----回永远兄 -- 不爱吱声

共:💬26 🌺11
分页树展主题 · 全看首页 上页
/ 2
下页 末页
  • 家园 【原创】探讨科学如何对待“偶然”与“必然”----回永远兄

    此贴是回永远兄的帖子。链接出处

    永远兄提出“科学是不是支持宿命论?所谓偶然因素,只是人类还不了解,并非真正偶然。既然没有偶然,那就只有必然,那是不是说我们的一切命运其实已经注定了,只是我们不知道罢了。是不是这样呢?

    为了引起大家注意,更多人参与讨论,所以单独开了一贴。下面是我的回复:

    对于偶然因素,科学无法解释,或者说科学只解释能解释,但科学总是试图发现更多“偶然”中的“必然”。

    比如说,宇宙大爆炸学说提出我们的宇宙时空爆炸于一个奇点。在奇点处,所有物质将被压缩到一个零体积的区域里,所以物质的密度和空间――时间的曲率变成无限大。但为什么奇点会在那个时刻爆炸而不是其他时刻?为什么爆炸成现在这个样子?这目前在科学来看实际是个偶然发生的过程,那么对于这个偶然发生的过程,科学就不会给于任何解释,这就是“宇宙第一推动力问题”。于是,人们可以宣称上帝点燃了宇宙。在科学史上,牛顿就认为是上帝设计好了宇宙并第一个推动了宇宙,然后撒手不管,让宇宙按程序运行,而牛顿(科学家)的任务就是发现这个宇宙运行规则。牛顿这种想法并非违背科学,实际上牛顿正是巧妙地将科学限定在对必然规律的研究,放弃偶然。

    不过,偶然与必然不是一成不变的。科学总是试图发现更多的必然,这样偶然就转化成必然,偶然就少一些,这可能就是有人觉得是不是“科学认为根本没有偶然,只有必然”的根源。但实际上,科学从来不会解释偶然,科学就不会也不应该下“没有偶然,只有必然”的定论。

    于是,偶然到底会不会最终消失这个问题又变成了哲学或者信仰的问题。在我看来,偶然永远不会消失,例子就是“为什么宇宙在那个时候爆炸,为什么爆炸成现在这个样子呢?”而我认为这个“宇宙第一推动力”问题永远存在。

    那么,对于当前存在的这个“宇宙第一推动力”问题该如何看待呢?可以有两种解释,一种是依赖于上帝,那就是像牛顿一样解释为“上帝干的”;另一种是不依赖于上帝,利用“人择原理”解释为“宇宙如果不是那样的话,就不会有我们了”。我偏爱第二种解释,因为尽管只要宇宙有一个开端,我们就可以设想存在一个造物主。但是,如果宇宙确实是完全自足的,造物主这个假定还有必要吗?

    同时,我们可以注意到,上面提到的两种对“偶然”的解释实际上并不影响科学对“必然”的解释!所以归根结底,如果我们试图解释“偶然”,那么我们需要有一点自己的信仰,但当对于已经被科学揭示了的“必然”,我们不妨信赖科学。因为科学更可靠!

    关键词(Tags): #吱声观点元宝推荐:ArKrXe,

    本帖一共被 2 帖 引用 (帖内工具实现)
    • 家园 “偶然”与“必然”

      妖道支持aokrayd的说法,觉得在我们讨论这个问题之前,有必要给偶然和必然下一个定义。既然要下定义,从哪个领域着手呢?妖道想来想去,觉得从统计学的观点来讲比较清晰明了一些。于是就自作主张的从统计学上来说明了。

      点看全图

      外链图片需谨慎,可能会被源头改

      妖道这里给出了一张图,根据一个大样本所绘的智商分布图。我们先看横坐标,很显然是智商的数字,而纵坐标代表什么有着该智商的相对人数。举一个例子,我们想察看一下智商一百的人在人群中所占的比例,那么在横坐标为100的地方引一条垂直于横坐标的线,该线与曲线交汇的点的纵坐标,0。025,就是智商100的人在人群中所占的比例。这张图是根据实际观测到的数字,得出的结论。所以大家看到的并不是一条非常光滑的曲线。如果我们能够把样本扩大到无限大,那么,曲线上每两个相邻的点之间的距离也就缩小到无限的小。那个时候,我们才真正得到了一条光滑的连续的曲线。妖道在这里请大家注意两点,第一点,就是我们所得到的图永远不可能达到那样的要求,因为我们永远也不可能获得一个无限的样品空间。第二点,就是对于每一个样品来说,就是所谓的任何一个人来说,他所呈现的,都只是在这图上的一点。换句话来说就是,虽然有人可以智商到130,150甚至180,但是,对于我们特指的这个人来说,他的智商只有一个,100。

      假定我们可以把任何一件事情发生的情况,都总结成类似的一条曲线。是所有的可能发生的情况作为横轴,而每种情况发生的可能性作为一个纵轴。那么,我们就可以得到所有事情发生的一条概率曲线。我想,对于任何单一的事物来说,这种曲线应该是存在的。换句话来说,就是所有的事情,我们都能够把它可以发生的可能性给总结成一条单一的曲线。只不过,对于某些事物来说,上面的点的数量是有限的,有些是无限的。比如说扔硬币,那么可能性就是两个,正面或者反面。而掷色子的可能性结果有6个。但是有些事物的可能性就是无限的,比如说一个人的身高,我可以说他有180厘米高,实际上这只是一个近似数,我可以将近似给缩小一点,180。102,但是这还是一个近似。那么所有人的可能性身高,就是也连续的数字,从30到300厘米之内,都有可能。

      明白了图上所讲的是什么,我们再来定义一下偶然和必然。

      如果我们把必然设定到一,就是说这个事件,只有当它的发生概率达到一的时候,我们才承认它是必然事件。而相对应的那一个点所代表的事物,也就是必然的。那么我们会发现,在绝大多数的情况下,这个必然事件是不存在的。扔硬币有两个可能性,每个可能都只是50%。那么,永远也不会出现一个必然发生的一面。实际上,我们从来不把单一事件的可能性设到1那么高,而通常是把几个事件,或者在某一个区间内的事件的可能性加起来来判断。就像扔硬币或者背面或者正面,这个事件的可能性就是1。(注意,我们是假定了一种理想状态)而掷色子的六个面的可能性加起来也是一。在实际生活中,我们所谓的必然通常只是把可能性设置到>95%(或者是根据具体情况来决定),就可以了。也就是说,尽管一个事件不是100%地会出现,我们依然把它认为是一种必然。比如说,如果一个人的智商在70-130之间,这个事件发生的概率是大约95%的样子。我们认为这就是一个必然事件。而当一个人的智商小于70或者大于130的时候,我们就说这是一个偶然事件。

      如果我们(或者所谓的科学)能够把所有的事件发生的可能性都给找出,并根据发生的可能性做出一张表格的话。我们就说所有的事件的发生都是必然的,因为我们对于特定事件发生的可能性已经把握到了100%。如果我们只是找到了其中的大多数可能,那么当那些少数可能发生的时候,我们就说偶然事件发生了。

      永远兄提出“科学是不是支持宿命论?所谓偶然因素,只是人类还不了解,并非真正偶然。既然没有偶然,那就只有必然,那是不是说我们的一切命运其实已经注定了,只是我们不知道罢了。是不是这样呢?

      我的回答是,即使你知道了一切事物发生的概率,你也永远不可能预知下一个特定事件发生的具体情况。为什么呢,因为这些可能性都是在无限发生的基础上得出来的,对于单一事件,它发生的地点安全是随机的,其可能性有我们已知的统计数字得出。就是说,我们知道大爆炸必然要爆发,但是这个点出现的位置,通常是有若干的可能性。每一个可能性发生的几率或许相同或许不同。假定只有三个点,三种可能性

      A点 99%的可能性

      B点 0。5%的可能性

      C点 0。5%的可能性

      对于一次大爆炸来说,这个点是完全随机的,但是如果可以重复无数次,那么会有99%的机会出现在A点。但是这个概率与我们这次是否出现在A点完全没有任何联系。就像我们扔硬币每次得到正面遇上一次是否得到正面完全没有联系一样。这次出现在哪个点,还是完全随机的。

      也就是说,即使我们已经知道了所有的可能性,以及每个可能性发生的概率,我们得到的仍然是一个随机的事件。这个是绝对不可被预测的。讲了这么多,不知道大家是否已经明白了?

      决定论的唯一一个特点就是,没有概率,只有必然。任何事物发生的概率都只是1,即使有其他的可能性,也只是理论上的存在。所以说,永远不会有早已经被决定了的事情存在,除非是那个事件是必然的。

      其实衲子的题目已经说得很明白了,只不过他没有展开来说明而已。妖道就在这里续貂了。妖道胡扯一通,专门来抛砖引玉。

      元宝推荐:不爱吱声,

      本帖一共被 1 帖 引用 (帖内工具实现)
      • 家园 【考考你】扔硬币也不应该仅有两种可能性 你想想还有没有别的可能
      • 家园 借题问一下妖道, 概率与统计有科学意义吗?

        If A, then B. 这是科学

        If A, then 90% will be B, 10% will be C. 这是科学吗?

        maybe, sometimes 可以是个科学命题吗?

        有些绵羊会飞, 因其不可证伪性而不为科学命题

        那么有些鸡不会飞, 可以是个科学命题吗?

        • 家园 窃以为然! 概率与统计有科学意义.

          概率与统计是自然科学的基本工具之一,有科学意义.

          (妖道只讲了它的逆命题, 答非所问, 扣分20.)

          "If A, then 90% will be B, 10% will be C. 这是科学吗?"

          绝对是科学命题, 因为它(理论上)是可以被检测的. 如果这不算科学, 那么搞统计的人都是伪科学人士了, 他们一定会抗议. 统计物理也不是科学了(如: 在200K的温度下, 粒子有40%的概率出现在能级Ek上), 那么当代的科学大厦将轰然倒地!

          "maybe, sometimes 可以是个科学命题吗?"

          是. 理由同上.

          "有些绵羊会飞, 因其不可证伪性而不为科学命题"

          这是可证伪的(虽然不一定容易), 是科学命题.

          "那么有些鸡不会飞, 可以是个科学命题吗? "

        • 家园 严谨的科学一定要有统计学意义

          毕竟是非白即黑的命题太少了。

          别的我不知道,在生物学中,任何一个命题都必须有显著的统计学上的意义。

          比如说吸烟致癌。前提是吸烟,结论是致癌。但是有些人一天抽两盒,抽了60年也没见得个癌症。这些人就坐落在了那个偶然区间里面了。

          每天吸烟超过三颗的人会有80%的几率在60岁之前患上至少一种癌症,而同龄的不吸烟的人中,这个机率只有10%。

          这个结论不科学么?

          • 家园 理科上有非黑即白的等式. 其它的很难, 除非定义式.

            统计的应用, 在社会科学研究上相当普遍, 但用着用着也觉得怪, 因为命题可能是 maybe, 也就是说这个命题 not at all. 换句话说, 这个命题不必然.

            叙数统计可以反映现实, 若事实上确有此事, 很难说它不科学. 但现实描述便是科学, 或是研究思考确认两者间的关系才是科学?

            每天吸烟超过三颗的人会有80%的几率在60岁之前患上至少一种癌症,而同龄的不吸烟的人中,这个机率只有10%。

            吸烟必致癌, 这是不正确, 或是未必正确, 不必然的说法.

            吸烟有80%的机会让人在60岁之前患上至少一种癌症, 这是现实叙述.

            嗯, 我也搞不清楚.

            • 家园 我也挠头, 可光头没什么好挠的...

              贫僧理解: 只要是反映现实的,就是科学的.

              "不必然"没啥不科学的, 也没啥令人不安或令人羞愧. 比如: 如果我们知道在给定A的情况下, B出现的概率是0.8 (假设B只有出现和不出现两种可能), 而通常情况下, B出现的概率是0.5. 这个发现带有信息, 是不trivial的, 可以算是科学的发现. 例如, 倘若这是关于某个角子机的发现, 那可就赚大发了(如在Las Vegas), 这是真真切切的现实, 如何不科学呢?

分页树展主题 · 全看首页 上页
/ 2
下页 末页


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河