五千年(敝帚自珍)

主题:【问一个初三数学题】一个三角形,周长是32,面积是16, -- 月色溶溶

共:💬29 🌺25
全看树展主题 · 分页首页 上页
/ 2
下页 末页
家园 【问一个初三数学题】一个三角形,周长是32,面积是16,

那么它的外接圆和内切圆半径各是多少?

今天我回答不出,明天还要回答...求救.

家园 我不会

今天做一个解三角形的题,用了20分钟才做出来。大部分时间都在回忆以前的公式了~~~

家园 看来是挺难.
家园 这个是几何问题呀

内切圆半径是1。

作图化简就知道,内切圆的半径与周长一半的积等于三角形的面积。

家园 内切圆半径是1

设三角形边长分别为a,b,c,已知有:a+b+c=32,三角形面积S=16

令三角形内切圆半径为r,则:

a*r/2+b*r/2+c*r/2=S,即

(a+b+c)*r/2=S

代入已知条件,有

32*r/2=16

得:r=1

家园 啊,对.内切圆的半径与周长一半的积等于三角形的面积。

这个是关键.

家园 谢谢,这个我明白了...

还有外切圆问题.

家园 外接圆径是2倍根号14?

假设三角形是直角三角形,

用勾股定理 a^2+b^2=C^2

已经已知条件ab=a+b+c和ab=32

代入计算C

具体过程不写了,我算数能力很差,结果可能不对,你自己算算看,反正这几个条件能算C了,C好像是根号224

家园 外接圆的半径可不可以构造特殊的直角三角形来解决?

假设直角三角形两个直角边a、b,斜边c^2=a^2+b^2

周长:a^2+b^2=(32-(a+b))^2

面积:a*b*1/2=16可以得到a*b=32

周长公式变形:a^2+b^2=32^2-64(a+b)+a^2+2*a*b+b^2

再简化:64*(a+b)=1024+2*a*b也就是a+b=17

a*b=32和a+b=17可以确定a、b有解(但算起来太麻烦,我们可以不算),说明这种直角三角形存在,那么c就是外切园的直径

c^2=a^2+b^2=(a+b)^2-2*ab=17*17-64=25*9,于是c=15

所以外切园半径是7.5

应该没有超出初三的水平,超过我就做不出来了。

家园 这个是可以的。外接圆半径是7.5

不失一般性,假设该三角形是直角三角形,且两个直角边分别为a、b,斜边为c,构建方程:

a+b+c=32

a*b/2=16

a*a+b*b=c*c

解方程,有:

a=(17-161^(1/2))/2

b=(17+161^(1/2))/2

c=15

方程有解,证明该三角形确实存在。

对直角三角形而言,外接圆半径是其斜边的一半,所以:

外切圆半径R=c/2=7.5

家园 这是个填空题,应该是可以假设的吧?
家园 可以是可以,但是需要先证明这种三角形存在。
家园 可以。既然是填空题,那就怎么快怎么来,证明过程都省了。
家园 我得先弄明白啊.
家园 你们都算出来了,一定是存在的!
全看树展主题 · 分页首页 上页
/ 2
下页 末页


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河