五千年(敝帚自珍)

主题:阿波罗尼奥斯问题-Prob. of Apollonius -- 理性网民

共:💬36 🌺127
全看分页树展 · 主题 跟帖
家园 【1.1】解析几何方法

PPP问题可以用解析几何的语言进行描述及求解。令给定点A、B、C的坐标分别为(xA, yA)、(xB, yB)、(xC, yC)。假设所求圆圆心为(x, y),半径为r。那么PPP问题等价于求解如下非线性方程组。其中xA、yA、xB、yB、xC、yC为已知量,x、y、r为未知量。

点看全图

方程组(1.1)的第一式要求点A在所求圆上。第二式要求点B在所求圆上。第三式要求点C在所求圆上。

为了求解方程组(1.1),用第一式减去第二式,并用第一式减去第三式。这样可以得到如下等价方程组

点看全图

方程组(1.2)的第一式要求点A在所求圆上。第二式要求所求圆圆心在线段AB的中垂线上。第三式要求所求圆圆心在线段AC的中垂线上。

方程组(1.2)的后两式组成一个关于x和y的二元二次方程组。它们可以解释为求线段AB和线段AC中垂线的交点。此二元二次方程组的行列式det(A)可以用于判断方程是否有解。

点看全图

当det(A)不为零时,x和y的解存在。将其代入第一式可以得到r的值。此时A、B、C三点不共线。当det(A)为零时,x和y的解不存在。此时A、B、C三点共线。

关键词(Tags): #几何
全看分页树展 · 主题 跟帖


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河