五千年(敝帚自珍)

主题:【原创】为什么汉语是世界上最先进的语言(上) -- 冷酷的哲学

共:💬1516 🌺8640 🌵163
分页树展主题 · 全看首页 上页
/ 102
下页 末页
          • 家园 通俗解释真是害人不浅啊

            单单一个演化,实际上受条件约束很多,在不同约束条件下,会朝不同的方向演变,复杂的、简洁的,都有可能。

            但是一弄出那个通俗解释,就预先把人洗脑了,此后就需要化很多脑筋来矫正。

            汉语,在概念的准确性上确实需要一场大扫荡。

            • 家园 不仅汉语,英语也存在同样的语言

              但是这很正常,你不能期待普通民众都能准确掌握专业术语,那么退而求其次,让普通民众掌握大致准确的专业术语就是一个不错的选择。

              其实不仅普通民众是这样,即使进化论的老祖宗达尔文恐怕也是这样,如果让达尔文在上文提到的evolution的专业解释和通俗解释选一个正确答案的话,他十有八九也会认为通俗解释更准确。

              从生物的角度讲,虽然evolution有可能朝更简单的方向发展,但毫无疑问,大多数evolution都是朝更复杂得方向发展的,从这个角度讲,把evolution翻译成进化比演化准确得多。

              • 家园 可能关键还是在不为上

                从EVOLUTION说,不觉得翻印成演化比进化更难理解,只要语文水平尚可,稍加提醒就可以接受。实在不觉得有人为阉割语义的必要。

                另外关于对达尔文老先生的推测,以俺对有文化的英国佬的印象来看,他们还是非常非常在意用词的精准的。而且从文艺复兴以来,欧洲人对概念精确的追求,可以用丧心病狂来形容不为过

                • 家园 我为这个词专门又翻了翻《物种起源》

                  我发现作者经常使用高等、低等等词,说明达尔文心中其实默认物种变化的潮流是从低级到高级、从简单到复杂,否则他就不会使用evolution这个词,而代之以alteration等更加中性的词。所以evolution翻译为“进化”非常准确。

        • 拐棍
          家园 确实Evolution更好的翻译是演化而不是进化

          但人自居万物之灵,把生物从单细胞到人的演化方向定义为进化也未为不可。从这个意义上讲,把演化翻成进化更是神来之笔。对于另一种遗传变化,没有产生什么大的影响,对物种生存没有贡献,则称为“变异”,普通人一听就懂。

          你反对进化的翻译,主要是定义中“由低级到高级逐渐发展变化”的高级刺激了你。你认为这是不合适的,这是对高级这个词的误解。高级未必高贵,高级中学不过是高中而已,低级语言有时候更有用。

          • 家园 进化的用词不当不在于高级低级

            而在于有进化,就有退化,因此产生了一个前进后退的概念。而evolution本身无所谓前进后退,如果一定要有的话,只有前进一个方向。可能出现适合生存的变化,也可能出现不适合生存的变化,生存下来的自然就都是适合生存的变化。即使常说的返祖现象也不是退化,变异更常用于一个具体的部分产生的反常变化,累计而成演化,而evolution在于通过适者生存而形成的结果这整个过程。因此的确演化比较达意。

            估计进化这个翻译的形成与历史上的用进废退的错误概念有关,后来就习惯成自然了。

            从生物个体来说,如果用高级来表述复杂度的话,高级与低级有别,不可想象人会演化成单细胞生物。但是从整个自然界来说,如果通过一次大灾难,复杂生物都灭绝了,而单细胞生物存活了下来,那么“先进”的生物就是单细胞生物了。因此高级不代表就是先进,也不代表就是适合生存,众所周知细菌的数量与历史比人长的多,人这个万物之灵也没有消灭掉细菌,反而还要靠细菌来维持肠胃的健康,是个依存关系。因此生物不如用复杂度来描述,什么高不高级,那是自己给自己带高帽子了。

            • 家园 if 非正交,then 隐参数(blk cat)

              if 非正交 (white cat), then 隐参数 (blk cat), give me something, or u will be fired (:)

              1.

              "由于价键轨道的非正交性等原因,价键理论的数学结构依然比分子轨道理论复杂得多,程序比较少,而相同精度的计算往往需要更多计算资源,所以价键理论目前仍然不太常用"

              not to mention all kind of the social sciences, where 非正交 languages=programming languages, and very often, the more 非正交, the more "charming" it becomes, such as in case of chinese, I guess.

              Are we chinese @top class of social sciences of the world in terms of social sciences, tg thinks so, I guess, at least many of them working in pure marxist social sciences fields, etc.

              I don't know, and in a 非正交 world, nobody knows, I guess.

              But somebody sounds like they know something in a 非正交 world, with apps of their various "隐参数理论".

              In qm, "s-cat" =非正交 =隐参数理论, kind of;

              In our genes, I guess, we are always looking for "光明照四方" 理论 with tears in our eyes, particularly when 相變 comes, and 相變 comes almost everyday in this mostly 非正交 social world, and quite bit in physics world as well, or entropy will catch up with us, we have to 演化 or 进化 or just do something.

              now "隐参数理论", why 隐? because of its 非正交, and its 能标 requirement is often beyond our reality world, and very often into "god's" world, if u will.

              then how do they know, because they have 隐参数理论理论, then can we "trust" them?

              1) well, this is the ONLY thing we have 4 u, so go 壟斷, baby.

              2) brand name, so once top leaders in social sicences=4 ever top leaders, globally.

              etc

              about 能标

              "The highway across the desert": we just started to ge into desert, long way to go

              [PPT]

              Black Holes and Quantum Physics

              www.pitt.edu/~super4/36011-37001/36571.pps

              File Format: Microsoft Powerpoint - Quick View

              The highway across the desert. Today's. Limit … GUTs. Planck length : Quantum ... his way. through. Stephen Hawking's great discovery: the radiating black hole ...

              -----------quoted---------

              witten1

              http://www.ccthere.com/alist/3830412

              (注:量子力学的Bohm隐参数解释能给出所有正统量子力学的预言,当然出没有给出更多的预言)。确实没有论据可以断言一个能自洽的对量子力学的非定域本性给出决定论式的解释是不存在的。既然Bohm给出了一个,那它就是有可能存在的。(注:个人认为隐参数的量子理论没多大意思,隐参数是怎么?没有人说的清,这就像人们依然没有真正理解量子理论的非定域本性一样。你多了一个自由度--隐参数,显然你可以包含的东西会多得多,这没多大意思。多提一句,到今天为止绝大多数的隐参数量子理论都被实验证否了,这使得那些喜欢玩概念的的就加上越来越“强大”的隐参数,让实验更难区分。。。比如前一阵的Gisin的实验证实任何包含有限速度(可以比光速快)的隐参数理论都是不对的,推论就是,隐参数理论得引进一个在逻辑上更加荒谬的无穷的大的传播速度来拯救自己。)

      • 家园 汉语"歧义",上綱上線數學問題

        1.

        汉语"歧义"

        from 墨虎:

        "汉语呢,也是先有一个概念,然后在两三千个基本概念元素(字)中找到与这个概念相关的几个元素(字),然后合成一个词汇。这个词汇往往包括最初概念的两三个最主要特征,但是不可能涵盖全部特征,这样就产生了歧义"

        http://www.ccthere.com/article/3839449

        "但是我非常希望中国能够获得理论的优势,不仅仅是跟的快,而且领导创新。我个人认为,其中最大的障碍就是汉语。我小孩是双语环境下长大的,非常明显。英语是以概念为核心的,先有一个概念,然后把这个概念赋值给一个词汇。汉语呢,也是先有一个概念,然后在两三千个基本概念元素(字)中找到与这个概念相关的几个元素(字),然后合成一个词汇。这个词汇往往包括最初概念的两三个最主要特征,但是不可能涵盖全部特征,这样就产生了歧义。造词的人如果没有做定义的习惯,这个歧义就会模糊本来的概念,其实即使造词的人做了定义,但是大多数人也不会去看,最后约定俗成的概念还是模糊了本来的概念。语言是思维的工具,概念模糊,下面就是逻辑混乱。"

        2.

        希尔伯特空间

        without "希尔伯特空间" type of 泛函分析, qm, qft, qcd, or whatever, they are all going no where, and there will be no "Speech codec" technology advancements or further advancements.

        "任意正交系上的多项式表示的傅立叶级数和傅立叶变换提供了一种有效的表述方式,而这也是泛函分析的核心概念之一"

        3.

        墨虎's post is new here and very thoughtful, but I would think this issue would not be new to 中科院 folks, may be they or whomever doing models or their leaders, think that our traditional chinese 人海战术+路徑積分="blk cat+white cat" =crossing river one way or another, etc, so no worry, I guess.

        4.

        other than "math", "歧义" is in modern physics' 路徑積分 etc as well, but of course, social science and languages are the worst, human language=

        化学+哲學+emotions+..., and top social scientists always beat top math/physics scientists, individual "profit margin" wise.

        and because of that, goog/fb folks are very much "red eyed", what the "f..." is going on? not a pure money issue to them, I guess.

        5. AI models/apps, huge money potential

        "人类的大脑无力接受太多的汉字", english or any, non-math language all have some kind of "忽悠" issues, but "white" with its physics/math and/or possibly english advantage, may be closer to the future sys admin position of "AI assisted information system" for the coming new world order, if you will, big deal.

        -----------------quoted-----------

        "到20世纪中叶,几乎所有的量子化学计算都是采用分子轨道理论进行的。这种局面在20世纪末与21世纪出发生了一定的变化。现代价键理论采用原子轨道线性组合产生价键轨道的方法,可以达到和分子轨道理论方法相似的精度。"

        "然而,由于价键轨道的非正交性等原因,价键理论的数学结构依然比分子轨道理论复杂得多,程序比较少,而相同精度的计算往往需要更多计算资源,所以价键理论目前仍然不太常用"

        希尔伯特空间

        维基百科,自由的百科全书

        跳转至: 导航、 搜索

        希爾伯特空間可以用來研究振動的弦的諧波。

        在数学领域,希尔伯特空间又叫完备的内积空间,是有限维欧几里得空间的一个推广,使之不局限于实的情形和有限的维数,但又不失完备性(而不像一般的欧几里得空间那样破坏了完备性)。与欧几里得空间相仿,希尔伯特空间也是一个内积空间,其上有距离和角的概念(及由此引伸而来的正交性与垂直性的概念)。此外,希尔伯特空间还是一个完备的空间,其上所有的柯西列等价于收敛列,从而微积分中的大部分概念都可以无障碍地推广到希尔伯特空间中。希尔伯特空间为基于任意正交系上的多项式表示的傅立叶级数和傅立叶变换提供了一种有效的表述方式,而这也是泛函分析的核心概念之一。希尔伯特空间是公設化数学和量子力学的关键性概念之一。

        目录

        [隐藏] 1 简单介绍

        2 定义

        3 常见的例子 3.1 欧几里得空间

        3.2 序列空间

        3.3 勒贝格空间

        3.4 索伯列夫空间

        4 希尔伯特空间的相互作用

        5 希尔伯特空间的基

        6 请参见

        7 注解和引用

        [编辑] 简单介绍

        希尔伯特空间以大卫·希尔伯特的名字命名,他在对积分方程的研究中研究了希尔伯特空间。冯·诺伊曼在其1929年出版的关于无界自伴算子的著作中[1],最早使用了“希尔伯特空间”这个名词。冯·诺伊曼可能是最早清楚地认识到希尔伯特空间的重要性的数学家之一,他在进行对量子力学的基础性和创造性地研究的时候认识到了这一点。此项研究由冯·诺伊曼与希尔伯特[2]和朗道展开,随后由尤金·维格纳(Eugene Wigner)继续深入。“希尔伯特空间”这个名字迅速被其他科学家所接受,例如在外尔1931年出版的著作《群与量子力学的理论》[3](The Theory of Groups and Quantum Mechanics)中就使用了这一名词。

        一个抽象的希尔伯特空间中的元素往往被称为向量。在实际应用中,它可能代表了一列复数或是一个函数。例如在量子力学中,一个物理系统可以表示为一个複希尔伯特空间,其中的向量是描述系统可能状态的波函数。详细的资料可以参考量子力学的数学描述相关的内容。量子力学中由平面波和束缚态所构成的希尔伯特空间,一般被称为装备希尔伯特空间(rigged Hilbert space)。

        [编辑] 定义

        在一个複數向量空间上的给定的内积可以按照如下的方式导出一个范数(norm):

        此空间称为是一个希尔伯特空间,如果其对于这个范数来说是完备的。这里的完备性是指,任何一个柯西列都收敛到此空间中的某个元素,即它们与某个元素的范数差的极限为。任何一个希尔伯特空间都是巴拿赫空间,但是反之未必。

        任何有限维内积空间(如欧几里得空间及其上的点积)都是希尔伯特空间。但从实际应用角度来看,无穷维的希尔伯特空间更有价值,例如

        酉群(unitary group)的表示论。

        平方可积的随机过程理论。

        偏微分方程的希尔伯特空间理论,特别是狄利克雷问题。

        函数的谱分析及小波理论。

        量子力学的数学描述。

        内积可以帮助人们从“几何的”观点来研究希尔伯特空间,并使用有限维空间中的几何语言来描述希尔伯特空间。在所有的无穷维拓扑向量空间中,希尔伯特空间性质最好,也最接近有限维空间的情形。

        傅立叶分析的一个重要目的是将一个给定的函数表示成一族给定的基底函数的和(可能是无穷和)。这个问题可以在希尔伯特空间中更抽象地描述为:任何一个希尔伯特空间都有一族标准正交基,而且每个希尔伯特空间中的元素都可以唯一地表示为这族基底中的元素或其倍数的和。

        • 家园 很有意思。但是正交系统不见得有优势

          假设五千个汉字都是两两正交的,换句话说,就是意义没有重叠,是不是组词就精确了?没歧义了?我看也不见得。

          首先,以傅里叶系统为例,不仅傅里叶项是正交的,傅里叶项的不同组合的乘积也是正交的,当然是关于内积而言。而汉字的不同组合,只要共用一个汉字,就会产生联想歧义,所以即使汉字本身正交,其词汇也不正交。

          第二,正交系统也是需要无限多的项来精确表达一个函数,想一想傅里叶展开。而实际工程应用里面,往往是一些非正交的basis在模拟函数方面效率更高,比如radial basis function. 

          • 家园 "广义正交"

            I don't know if we have any non-正交 math.

            Hausdorff测度, still some kind of 邻域正交 in the sense of 拓撲, I think.

            with that and 微分结构 introduced, we have 微分流形, where we could 外微分 across local 坐标系, kind of, 广义正交;

            out of the above and other "广义正交" math theory and generally speaking, we have all kinds of "non-linear (not really non-linear!)" math models including those you mentioned, I think.

            I may be wrong, having not fully researched on this subject.

            while writing this and researching on google, I keep thinking that all these type of stuff are very "hard", "confusing" for our natural brain and languages, and even "conflict generating" if in a more sensitive social environment, such as this "language post", where personal ego, national pride type of emotions running very hot.

            and life is short, so AI apps need to come faster.

            and I hope more people will join discussion with this kind of 人文 physics/math, where a lot of future AI apps will be developed, I guess.

            ----------quoted----------

            1.

            拓撲學術語- 维基百科,自由的百科全书

            zh.wikipedia.org/zh-hk/拓撲學術語

            所以,所有的緊Hausdorff 空間都是正規的。 參閱准紧(quasicompact)。 紧开拓扑(Compact-open topology) 考慮所有由X 到Y 的連續函數所形成的集合C(X, Y), 我們

            Hausdorff测度与Hausdorff维数 THE VOID

            zs11235.wordpress.com/.../hausdorff测度与hausdorff... - 轉為繁體網頁

            2012年8月1日 – 的正交投影,则 |p_V(x)-p_V(y)|\leq |x-y| 。由推论1,我们有. 推论2. \mathbb{R}^d 中子集的Hausdorff测度在平移和正交变换下不变;; 齐次性: ...

            [PDF]

            基于新的加权Hausdorff 距离的图像匹配

            www.cnoenet.com/m8008189808/.../20070543.pdf - 轉為繁體網頁

            檔案類型: PDF/Adobe Acrobat - 快速檢視

            由 杨兵 著作 - 2007 - 被引用 4 次 - 相關文章

            由特征值所对应的特征向量所构成的正交阵&. 由于结构张量蕴含图像的局部结构信息"在公式. (4)的基础上"可用它来对Hausdorff 距离进行加权%. (STWHD(,,7)1 ...

            Hausdorff-Young不等式--中国百科网

            www.chinabaike.com/article/.../200806041507449.ht... - 轉為繁體網頁

            Hausdorff-Young不等式,中国百科网. ... Hausdorff - Young inequalities. Hal改b ... 对于无界正交函数系来说,Ha班目0盯一YoLn唱不等式的定量表述(如果f6L,,1 ...

            种Sierpinski垫片的Hausdorff测度

            file.lw23.com/.../68f4beb1-3b51-4f80-95c5-f8d1d61a... - 轉為繁體網頁

            其s维Hausdorff测度为1. 0. 证明由引理1,不难得到F的Hausdorff维数s= 1. 现在把F向x轴正交投影,则在[0,1]区间上得到一个分形集K,其等价描述如下:记K ...

            2.

            流形- 维基百科,自由的百科全书

            zh.wikipedia.org/zh-hk/流形 - 轉為繁體網頁

            这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它 ...

            黎曼几何学_百度百科

            baike.baidu.com/view/149368.htm - 中華人民共和國 - 轉為繁體網頁

            ωn为局部正规正交标架e1,e2,…,en的对偶形式,也称对偶基,即满足的n个一次微分形式,于是在基{ei}下,由于,度量形式可写为。 任一仿紧微分流形总具有黎曼 ...

            复流形_百度百科

            baike.baidu.com/view/1403361.htm - 中華人民共和國 - 轉為繁體網頁

            即它能被一族坐标邻域(见微分流形)所覆盖,其中每个坐标邻域能与n维复空间Cn ... CPn在P点的任一切向量X可对应于球面S2n中与上述大圆正交的切向量塣,把塣的 ...

            3.

            第十五章正交曲面坐标系_百度文库

            wenku.baidu.com/.../315a6226482fb4daa58d4b03.ht... - 轉為繁體網頁

            例3 对于柱坐标系, du = 例4 对于球坐标系, du = 运算法则1 ?u ?u ?u dr + dθ + dz. ?r ?θ ?z ?u ?u ?u dr + dθ + dφ. ?r ?θ ?φ ?f dxi , ?xi 外微分算符d在不同坐标系 ...

            基于外微分形式的一般坐标系下梯度\旋度\散度的统一推导_高等教育 ...

            www.starlunwen.net ... 教育论文 高等教育论文 - 轉為繁體網頁

            2011年10月5日 – 四总结本文给出了一种基于外微分形式的推导任意坐标系下梯度、旋度、散度的统一方法。该方法非常简单,其步骤仅有微分运算和比较等式两边。

            外微分可以应用于微分方程的数值解算吗? - Seminar Math - 数学习 ...

            www.seminarmath.com/.../外微分可以应用于微分方程... - 轉為繁體網頁

            2012年1月24日 – 我简单的查阅了一下文献:采用外微分,好多基本的物理规律要用不同的 ... 起源于对物理世界的描述,而物理定律实际上是脱离于特定坐标系的。

            外微分的问题列表- Seminar Math - 数学习明纳尔

            www.seminarmath.com/tags/外微分/ - 轉為繁體網頁

            2012年1月24日 – ... 起源于对物理世界的描述,而物理定律实际上是脱离于特定坐标系的。 ... 我简单的查阅了一下文献:采用外微分,好多基本的物理规律要用不同的 ...

            4.

            [PPT]

            CH5

            140.133.35.1/faculty/pwu/NN/CH05.ppt

            檔案類型: Microsoft Powerpoint - 快速檢視

            輻狀基底函數類神經網路( Radial Basis Function ANN ). 類神經網路. 4 ..... 在1977 年Mackey和Glass發表了一篇重要的論文,利用一階微分-延遲方程式(first-order ...

            [PDF]

            3.3 - 國立中央大學

            thesis.lib.ncu.edu.tw/ETD-db/ETD-search/getfile?URN...pdf

            檔案類型: PDF/Adobe Acrobat - HTML 版

            由 T Liao 著作 - 2009 - 相關文章

            3.4.2 輻狀基底函數中心點選取法. ..... 圖4-23 回饋式與輻狀基底函數類神經網路填補績效. ...... 的偏微分可由微積分的連鎖律(chain rule)來求得:. )())(. (')(. )(. )( tyt net ...

            預測與應用 - 圖書服務- 交通部運輸研究所\\

            www.iot.gov.tw 首頁 圖書服務 博碩士論文

            此外,在本研究中,採用輻狀基底函數類神經網路(Radial Basis Function Neural ... autoregressive stochastic time series)與確定性一階微分方程式(Deterministic ...

            [PDF]

            不同人工神經網路架構在不動產大量估價之應用與比較 - 國立臺北大學 ...

            www.rebe.ntpu.edu.tw/download.php?filename=499...pdf...

            檔案類型: PDF/Adobe Acrobat - 快速檢視

            CAMA)已逐漸盛行與被應用,自960年代開始,國外多應用電腦輔助大量估價 ... Link Network, MFLN)、輻狀基底函數網路(Radial Basis Function Network, ...... 號的傳遞過程來調整層與層之間的權值,其方式係利用微分產生,而調整幅度和誤. 差函數 ...

            PDF]

            支援向量機於信用評等之應用

            nlg.csie.ntu.edu.tw/.../...

            檔案類型: PDF/Adobe Acrobat - 快速檢視

            除了上述的方法外,近幾年中又有許多新的方法被提出,支援向量機(Support Vector .... Dual Optimization Problem)來解決,先對方程式(4)的w 和b. 偏微分:. 0. = .... 本研究採用放射型(RBF)核心函數來建立分類系統,因為放射型函數能分類非線性 ...

            5.

            MIT牛人解说数学体系(推荐~)2微分几何:流形上的分析——在拓扑空间上引入微分结构

            拓扑学把极限的概念推广到一般的拓扑空间,但这不是故事的结束,而仅仅是开 始。在微积分里面,极限之后我们有微分,求导,积分。这些东西也可以推广到拓扑空间,在拓扑学的基础上建立起来——这就是微分几何。从教学上说,微分几何 的教材,有两种不同的类型,一种是建立在古典微机分的基础上的“古典微分几何”,主要是关于二维和三维空间中的一些几何量的计算,比如曲率。还有一种是建 立在现代拓扑学的基础上,这里姑且称为“现代微分几何”——它的核心概念就是“流形”(manifold)——就是在拓扑空间的基础上加了一套可以进行微 分运算的结构。现代微分几何是一门非常丰富的学科。比如一般流形上的微分的定义就比传统的微分丰富,我自己就见过三种从不同角度给出的等价定义——这一方 面让事情变得复杂一些,但是另外一个方面它给了同一个概念的不同理解,往往在解决问题时会引出不同的思路。除了推广微积分的概念以外,还引入了很多新概 念:tangent space, cotangent space, push forward, pull back, fibre bundle, flow, immersion, submersion 等等。

            近些年,流形在machine learning似乎相当时髦。但是,坦率地说,要弄懂一些基本的流形算法, 甚至“创造”一些流形算法,并不需要多少微分几何的基础。对我的研究来说,微分几何最重要的应用就是建立在它之上的另外一个分支:李群和李代数——这是数 学中两大家族分析和代数的一个漂亮的联姻。分析和代数的另外一处重要的结合则是泛函分析,以及在其基础上的调和分析。

            代数:一个抽象的世界关于抽象代数

            回过头来,再说说另一个大家族——代数。

            如果说古典微积分是分析的入门,那么现代代数的入门点则是两个部分:线性代数(linear algebra)和基础的抽象代数(abstract algebra)——据说国内一些教材称之为近世代数。

            代数——名称上研究的似乎是数,在我看来,主要研究的是运算规则。一门代数, 其实都是从某种具体的运算体系中抽象出一些基本规则,建立一个公理体系,然后在这基础上进行研究。一个集合再加上一套运算规则,就构成一个代数结构。在主 要的代数结构中,最简单的是群(Group)——它只有一种符合结合率的可逆运算,通常叫“乘法”。如果,这种运算也符合交换率,那么就叫阿贝尔群 (Abelian Group)。如果有两种运算,一种叫加法,满足交换率和结合率,一种叫乘法,满足结合率,它们之间满足分配率,这种丰富一点的结构叫做环(Ring), 如果环上的乘法满足交换率,就叫可交换环(Commutative Ring)。如果,一个环的加法和乘法具有了所有的良好性质,那么就成为一个域(Field)。基于域,我们可以建立一种新的结构,能进行加法和数乘,就 构成了线性代数(Linear algebra)。

            代数的好处在于,它只关心运算规则的演绎,而不管参与运算的对象。只要定义恰 当,完全可以让一只猫乘一只狗得到一头猪:-)。基于抽象运算规则得到的所有定理完全可以运用于上面说的猫狗乘法。当然,在实际运用中,我们还是希望用它 干点有意义的事情。学过抽象代数的都知道,基于几条最简单的规则,比如结合律,就能导出非常多的重要结论——这些结论可以应用到一切满足这些简单规则的地 方——这是代数的威力所在,我们不再需要为每一个具体领域重新建立这么多的定理。

            抽象代数有在一些基础定理的基础上,进一步的研究往往分为两个流派:研究有限 的离散代数结构(比如有限群和有限域),这部分内容通常用于数论,编码,和整数方程这些地方;另外一个流派是研究连续的代数结构,通常和拓扑与分析联系在 一起(比如拓扑群,李群)。我在学习中的focus主要是后者。

            线性代数:“线性”的基础地位

            对于做Learning, vision, optimization或者statistics的人来说,接触最多的莫过于线性代数——这也是我们在大学低年级就开始学习的。线性代数,包括建立在它 基础上的各种学科,最核心的两个概念是向量空间和线性变换。线性变换在线性代数中的地位,和连续函数在分析中的地位,或者同态映射在群论中的地位是一样的 ——它是保持基础运算(加法和数乘)的映射。

            在learning中有这样的一种倾向——鄙视线性算法,标榜非线性。也许在 很多场合下面,我们需要非线性来描述复杂的现实世界,但是无论什么时候,线性都是具有根本地位的。没有线性的基础,就不可能存在所谓的非线性推广。我们常 用的非线性化的方法包括流形和kernelization,这两者都需要在某个阶段回归线性。流形需要在每个局部建立和线性空间的映射,通过把许多局部线 性空间连接起来形成非线性;而kernerlization则是通过置换内积结构把原线性空间“非线性”地映射到另外一个线性空间,再进行线性空间中所能 进行的操作。而在分析领域,线性的运算更是无处不在,微分,积分,傅立叶变换,拉普拉斯变换,还有统计中的均值,通通都是线性的。

            泛函分析:从有限维向无限维迈进

            在大学中学习的线性代数,它的简单主要因为它是在有限维空间进行的,因为有 限,我们无须借助于太多的分析手段。但是,有限维空间并不能有效地表达我们的世界——最重要的,函数构成了线性空间,可是它是无限维的。对函数进行的最重 要的运算都在无限维空间进行,比如傅立叶变换和小波分析。这表明了,为了研究函数(或者说连续信号),我们需要打破有限维空间的束缚,走入无限维的函数空 间——这里面的第一步,就是泛函分析。

            泛函分析(Functional Analysis)是研究的是一般的线性空间,包括有限维和无限维,但是很多东西在有限维下显得很trivial,真正的困难往往在无限维的时候出现。在 泛函分析中,空间中的元素还是叫向量,但是线性变换通常会叫作“算子”(operator)。除了加法和数乘,这里进一步加入了一些运算,比如加入范数去 表达“向量的长度”或者“元素的距离”,这样的空间叫做“赋范线性空间”(normed space),再进一步的,可以加入内积运算,这样的空间叫“内积空间”(Inner product space)。

            大家发现,当进入无限维的时间时,很多老的观念不再适用了,一切都需要重新审视。

            所有的有限维空间都是完备的(柯西序列收敛),很多无限维空间却是不完备的(比如闭区间上的连续函数)。在这里,完备的空间有特殊的名称:完备的赋范空间叫巴拿赫空间(Banach space),完备的内积空间叫希尔伯特空间(Hilbert space)。

            在有限维空间中空间和它的对偶空间的是完全同构的,而在无限维空间中,它们存在微妙的差别。

            在有限维空间中,所有线性变换(矩阵)都是有界变换,而在无限维,很多算子是无界的(unbounded),最重要的一个例子是给函数求导。

            在有限维空间中,一切有界闭集都是紧的,比如单位球。而在所有的无限维空间中,单位球都不是紧的——也就是说,可以在单位球内撒入无限个点,而不出现一个极限点。

            在有限维空间中,线性变换(矩阵)的谱相当于全部的特征值,在无限维空间 中,算子的谱的结构比这个复杂得多,除了特征值组成的点谱(point spectrum),还有approximate point spectrum和residual spectrum。虽然复杂,但是,也更为有趣。由此形成了一个相当丰富的分支——算子谱论(Spectrum theory)。

            在有限维空间中,任何一点对任何一个子空间总存在投影,而在无限维空间中, 这就不一定了,具有这种良好特性的子空间有个专门的名称切比雪夫空间(Chebyshev space)。这个概念是现代逼近理论的基础(approximation theory)。函数空间的逼近理论在Learning中应该有着非常重要的作用,但是现在看到的运用现代逼近理论的文章并不多。

            继续往前:巴拿赫代数,调和分析,和李代数

            基本的泛函分析继续往前走,有两个重要的方向。第一个是巴拿赫代数 (Banach Algebra),它就是在巴拿赫空间(完备的内积空间)的基础上引入乘法(这不同于数乘)。比如矩阵——它除了加法和数乘,还能做乘法——这就构成了一 个巴拿赫代数。除此以外,值域完备的有界算子,平方可积函数,都能构成巴拿赫代数。巴拿赫代数是泛函分析的抽象,很多对于有界算子导出的结论,还有算子谱 论中的许多定理,它们不仅仅对算子适用,它们其实可以从一般的巴拿赫代数中得到,并且应用在算子以外的地方。巴拿赫代数让你站在更高的高度看待泛函分析中 的结论,但是,我对它在实际问题中能比泛函分析能多带来什么东西还有待思考。

            最能把泛函分析和实际问题在一起的另一个重要方向是调和分析 (Harmonic Analysis)。我在这里列举它的两个个子领域,傅立叶分析和小波分析,我想这已经能说明它的实际价值。它研究的最核心的问题就是怎么用基函数去逼近 和构造一个函数。它研究的是函数空间的问题,不可避免的必须以泛函分析为基础。除了傅立叶和小波,调和分析还研究一些很有用的函数空间,比如Hardy space,Sobolev space,这些空间有很多很好的性质,在工程中和物理学中都有很重要的应用。对于vision来说,调和分析在信号的表达,图像的构造,都是非常有用的 工具。

            当分析和线性代数走在一起,产生了泛函分析和调和分析;当分析和群论走在一 起,我们就有了李群(Lie Group)和李代数(Lie Algebra)。它们给连续群上的元素赋予了代数结构。我一直认为这是一门非常漂亮的数学:在一个体系中,拓扑,微分和代数走到了一起。在一定条件下, 通过李群和李代数的联系,它让几何变换的结合变成了线性运算,让子群化为线性子空间,这样就为Learning中许多重要的模型和算法的引入到对几何运动 的建模创造了必要的条件。因此,我们相信李群和李代数对于vision有着重要意义,只不过学习它的道路可能会很艰辛,在它之前需要学习很多别的数学。

            现代概率论:在现代分析基础上再生

            最后,再简单说说很多Learning的研究者特别关心的数学分支:概率论。 自从Kolmogorov在上世纪30年代把测度引入概率论以来,测度理论就成为现代概率论的基础。在这里,概率定义为测度,随机变量定义为可测函数,条 件随机变量定义为可测函数在某个函数空间的投影,均值则是可测函数对于概率测度的积分。值得注意的是,很多的现代观点,开始以泛函分析的思路看待概率论的 基础概念,随机变量构成了一个向量空间,而带符号概率测度则构成了它的对偶空间,其中一方施加于对方就形成均值。角度虽然不一样,不过这两种方式殊途同 归,形成的基础是等价的。

            在现代概率论的基础上,许多传统的分支得到了极大丰富,最有代表性的包括鞅论 (Martingale)——由研究赌博引发的理论,现在主要用于金融(这里可以看出赌博和金融的理论联系,:-P),布朗运动(Brownian Motion)——连续随机过程的基础,以及在此基础上建立的随机分析(Stochastic Calculus),包括随机积分(对随机过程的路径进行积分,其中比较有代表性的叫伊藤积分(Ito Integral)),和随机微分方程。对于连续几何运用建立概率模型以及对分布的变换的研究离不开这些方面的知识。

            • 家园 "机器学习和计算机视觉有关的数学 "

              -----------quoted-------------

              机器学习和计算机视觉有关的数学

              注:本文转载自:http://blog.csdn.net/lanbing510/article/details/7358878

              1. 线性代数 (Linear Algebra):

              我想国内的大学生都会学过这门课程,但是,未必每一位老师都能贯彻它的精要。这门学科对于Learning是必备的基础,对它的透彻掌握是必不可少的。我在科大一年级的时候就学习了这门课,后来到了香港后,又重新把线性代数读了一遍,所读的是

              Introduction to Linear Algebra (3rd Ed.) by Gilbert Strang.

              这本书是MIT的线性代数课使用的教材,也是被很多其它大学选用的经典教材。它的难度适中,讲解清晰,重要的是对许多核心的概念讨论得比较透彻。我个人觉得,学习线性代数,最重要的不是去熟练矩阵运算和解方程的方法——这些在实际工作中MATLAB可以代劳,关键的是要深入理解几个基础而又重要的概念:子空间(Subspace),正交(Orthogonality),特征值和特征向量(Eigenvalues and eigenvectors),和线性变换(Linear transform)。从我的角度看来,一本线代教科书的质量,就在于它能否给这些根本概念以足够的重视,能否把它们的联系讲清楚。Strang的这本书在这方面是做得很好的。

              而且,这本书有个得天独厚的优势。书的作者长期在MIT讲授线性代数课(18.06),课程的video在MIT的Open courseware网站上有提供。有时间的朋友可以一边看着名师授课的录像,一边对照课本学习或者复习。

              http://ocw.mit.edu/OcwWeb/Mathematics/18-06Spring-2005/CourseHome/index.htm

              2. 概率和统计 (Probability and Statistics):

              概率论和统计的入门教科书很多,我目前也没有特别的推荐。我在这里想介绍的是一本关于多元统计的基础教科书:

              Applied Multivariate Statistical Analysis (5th Ed.) by Richard A. Johnson and Dean W. Wichern

              这本书是我在刚接触向量统计的时候用于学习的,我在香港时做研究的基础就是从此打下了。实验室的一些同学也借用这本书学习向量统计。这本书没有特别追求数学上的深度,而是以通俗易懂的方式讲述主要的基本概念,读起来很舒服,内容也很实用。对于Linear regression, factor analysis, principal component analysis (PCA), and canonical component analysis (CCA)这些Learning中的基本方法也展开了初步的论述。

              之后就可以进一步深入学习贝叶斯统计和Graphical models。一本理想的书是

              Introduction to Graphical Models (draft version). by M. Jordan and C. Bishop.

              我不知道这本书是不是已经出版了(不要和Learning in Graphical Models混淆,那是个论文集,不适合初学)。这本书从基本的贝叶斯统计模型出发一直深入到复杂的统计网络的估计和推断,深入浅出,statistical learning的许多重要方面都在此书有清楚论述和详细讲解。MIT内部可以access,至于外面,好像也是有电子版的。

              3. 分析 (Analysis):

              我想大家基本都在大学就学过微积分或者数学分析,深度和广度则随各个学校而异了。这个领域是很多学科的基础,值得推荐的教科书莫过于

              Principles of Mathematical Analysis, by Walter Rudin

              有点老,但是绝对经典,深入透彻。缺点就是比较艰深——这是Rudin的书的一贯风格,适合于有一定基础后回头去看。

              在分析这个方向,接下来就是泛函分析(Functional Analysis)。

              Introductory Functional Analysis with Applications, by Erwin Kreyszig.

              适合作为泛函的基础教材,容易切入而不失全面。我特别喜欢它对于谱论和算子理论的特别关注,这对于做learning的研究是特别重要的。Rudin也有一本关于functional analysis的书,那本书在数学上可能更为深刻,但是不易于上手,所讲内容和learning的切合度不如此书。

              在分析这个方向,还有一个重要的学科是测度理论(Measure theory),但是我看过的书里面目前还没有感觉有特别值得介绍的。

              4. 拓扑 (Topology):

              在我读过的基本拓扑书各有特色,但是综合而言,我最推崇:

              Topology (2nd Ed.) by James Munkres

              这本书是Munkres教授长期执教MIT拓扑课的心血所凝。对于一般拓扑学(General topology)有全面介绍,而对于代数拓扑(Algebraic topology)也有适度的探讨。此书不需要特别的数学知识就可以开始学习,由浅入深,从最基本的集合论概念(很多书不屑讲这个)到Nagata-Smirnov Theorem和Tychonoff theorem等较深的定理(很多书避开了这个)都覆盖了。讲述方式思想性很强,对于很多定理,除了给出证明过程和引导你思考其背后的原理脉络,很多令人赞叹的亮点——我常读得忘却饥饿,不愿释手。很多习题很有水平。

              5. 流形理论 (Manifold theory):

              对于拓扑和分析有一定把握时,方可开始学习流形理论,否则所学只能流于浮浅。我所使用的书是

              Introduction to Smooth Manifolds. by John M. Lee

              虽然书名有introduction这个单词,但是实际上此书涉入很深,除了讲授了基本的manifold, tangent space, bundle, sub-manifold等,还探讨了诸如纲理论(Category theory),德拉姆上同调(De Rham cohomology)和积分流形等一些比较高级的专题。对于李群和李代数也有相当多的讨论。行文通俗而又不失严谨,不过对某些记号方式需要熟悉一下。

              虽然李群论是建基于平滑流形的概念之上,不过,也可能从矩阵出发直接学习李群和李代数——这种方法对于急需使用李群论解决问题的朋友可能更加实用。而且,对于一个问题从不同角度看待也利于加深理解。下面一本书就是这个方向的典范:

              Lie Groups, Lie Algebras, and Representations: An Elementary Introduction. by Brian C. Hall

              此书从开始即从矩阵切入,从代数而非几何角度引入矩阵李群的概念。并通过定义运算的方式建立exponential mapping,并就此引入李代数。这种方式比起传统的通过“左不变向量场(Left-invariant vector field)“的方式定义李代数更容易为人所接受,也更容易揭示李代数的意义。最后,也有专门的论述把这种新的定义方式和传统方式联系起来。

              ————————————————————————————

              无论是研究Vision, Learning还是其它别的学科,数学终究是根基所在。学好数学是做好研究的基石。学好数学的关键归根结底是自己的努力,但是选择一本好的书还是大有益处的。不同的人有不同的知识背景,思维习惯和研究方向,因此书的选择也因人而异,只求适合自己,不必强求一致。上面的书仅仅是从我个人角度的出发介绍的,我的阅读经历实在非常有限,很可能还有比它们更好的书(不妨也告知我一声,先说声谢谢了)。

              --------------------------------------------------------------------------------------------------------------------------------

              Learning中的代数结构的建立

              Learning是一个融会多种数学于一体的领域。说起与此有关的数学学科,我们可能会迅速联想到线性代数以及建立在向量空间基础上的统计模型——事实上,主流的论文中确实在很大程度上基于它们。

              R^n (n-维实向量空间) 是我们在paper中见到最多的空间,它确实非常重要和实用,但是,仅仅依靠它来描述我们的世界并不足够。事实上,数学家们给我们提供了丰富得多的工具。

              “空间”(space),这是一个很有意思的名词,几乎出现在所有的数学分支的基础定义之中。归纳起来,所谓空间就是指一个集合以及在上面定义的某种数学结构。关于这个数学结构的定义或者公理,就成为这个数学分支的基础,一切由此而展开。

              还是从我们最熟悉的空间——R^n 说起吧。大家平常使用这个空间的时候,除了线性运算,其实还用到了别的数学结构,包括度量结构和内积结构。

              · 第一,它是一个拓扑空间(Topological space)。而且从拓扑学的角度看,具有非常优良的性质:Normal (implying Hausdorff and Regular),Locally Compact, Paracompact, with Countable basis, Simply connected (implying connected and path connected),Metrizable.

              · 第二,它是一个度量空间(Metric space)。我们可以计算上面任意两点的距离。

              · 第三,它是一个有限维向量空间(Finite dimensional space)。因此,我们可以对里面的元素进行代数运算(加法和数乘),我们还可以赋予它一组有限的基,从而可以用有限维坐标表达每个元素。

              · 第四,基于度量结构和线性运算结构,可以建立起分析(Analysis)体系。我们可以对连续函数进行微分,积分,建立和求解微分方程,以及进行傅立叶变换和小波分析。

              · 第五,它是一个希尔伯特空间(也就是完备的内积空间)(Hilbert space, Complete inner product space)。它有一套很方便计算的内积(inner product)结构——这个空间的度量结构其实就是从其内积结构诱导出来。更重要的,它是完备的(Complete)——代表任何一个柯西序列(Cauchy sequence)都有极限——很多人有意无意中其实用到了这个特性,不过习惯性地认为是理所当然了。

              · 第六,它上面的线性映射构成的算子空间仍旧是有限维的——一个非常重要的好处就是,所有的线性映射都可以用矩阵唯一表示。特别的,因为它是有限维完备空间,它的泛函空间和它本身是同构的,也是R^n。因而,它们的谱结构,也就可以通过矩阵的特征值和特征向量获得。

              · 第七,它是一个测度空间——可以计算子集的大小(面积/体积)。正因为此,我们才可能在上面建立概率分布(distribution)——这是我们接触的绝大多数连续统计模型的基础。

              我们可以看到,这是一个非常完美的空间,为我们的应用在数学上提供了一切的方便,在上面,我们可以理所当然地认为它具有我们希望的各种良好性质,而无须特 别的证明;我们可以直接使用它的各种运算结构,而不需要从头建立;而且很多本来不一样的概念在这里变成等价的了,我们因此不再需要辨明它们的区别。

              以此为界,Learning的主要工作分成两个大的范畴:

              1. 建立一种表达形式,让它处于上面讨论的R^n空间里面。

              2. 获得了有限维向量表达后,建立各种代数算法或者统计模型进行分析和处理。

              这里只讨论第一个范畴。先看看,目前用得比较广泛的一些方法:

              1. 直接基于原始数据建立表达。 我们关心的最终目标是一个个现实世界中的对象:一幅图片,一段语音,一篇文章,一条交易记录,等等。这些东西大部分本身没有附着一个数值向量的。为了构造 一个向量表达,我们可以把传感器中记录的数值,或者别的什么方式收集的数值数据按照一定的顺序罗列出来,就形成一个向量了。如果有n个数字,就认为它们在R^n里面。

              不过,这在数学上有一点小问题,在大部分情况下,根据数据产生的物理原理,这些向量的值域并不能充满整个空间。比如图像的像素值一般是正值,而且在一个有界闭集之中。这带来的问题是,对它们进行线性运算很可能得到的结果会溢出正常的范围——在大部分paper中,可能只是采用某些heuristics的手段进行简单处理,或者根本不管,很少见到在数学上对此进行深入探讨的——不过如果能解决实际问题,这也是无可厚非的,毕竟不是所有的工作都需要像纯数学那样追求严谨。

              2. 量化(quantization)。这是在处理连续信号时被广泛采用的方式。只是习以为常,一般不提名字而已。比如一个空间信号(Vision中的image)或者时间信号,它们的domain中的值是不可数无限大的(uncountably infinite),不要说表示为有限维向量,即使表达为无限序列也是不可能的。在这种情况下,一般在有限域内,按照一定顺序每隔一定距离取一个点来代表其周围的点,从而形成有限维的表达。这就是信号在时域或空域的量化。

              这样做不可避免要丢失信息。但是,由于小邻域内信号的高度相关,信息丢失的程度往往并不显著。而且,从理论上说,这相当于在频域中的低通过率。对于有限能量的连续信号,不可能在无限高的频域中依然保持足够的强度,只要采样密度足够,丢失的东西可以任意的少。

              除了表示信号,对于几何形体的表达也经常使用量化,比如表示curve和surface。

              3. 找出有限个数充分表达一个对象也许不是最困难的。不过,在 其上面建立数学结构却未必了。一般来说,我们要对其进行处理,首先需要一个拓扑结构用以描述空间上的点是如何联系在一起。直接建立拓扑结构在数学上往往非 常困难,也未必实用。因此,绝大部分工作采取的方式是首先建立度量结构。一个度量空间,其度量会自然地诱导出一个拓扑结构——不过,很多情况下我们似乎会无视它的存在。

              最简单的情况,就是使用原始向量表达的欧氏距离(Euclidean distance)作为metric。 不过,由于原始表达数值的不同特性,这种方式效果一般不是特别好,未必能有效表达实际对象的相似性(或者不相似性)。因此,很多工作会有再此基础上进行度 量的二次建立。方式是多种多样的,一种是寻求一个映射,把原空间的元素变换到一个新的空间,在那里欧氏距离变得更加合适。这个映射发挥的作用包括对信息进 行筛选,整合,对某些部分进行加强或者抑制。这就是大部分关于feature selection,feature extraction,或者subspace learning的文章所要做的。另外一种方式,就是直接调节距离的计算方式(有些文章称之为metric learning)。

              这两种方式未必是不同的。如果映射是单射,那么它相当于在原空间建立了一个不同的度量。反过来,通过改变距离计算方式建立的度量在特定的条件下对应于某种映射。

              4. 大家可能注意到,上面提到的度量建立方法,比如欧氏距离,它需要对元素进行代数运算。对于普通的向量空间,线性运算是天然赋予的,我们无须专门建立,所以可以直接进行度量的构造——这也是大部分工作的基础。可是,有些事物其原始表达不是一个n-tuple,它可能是一个set,一个graph,或者别的什么特别的object。怎么建立代数运算呢?

              一种方法是直接建立。就是给这些东西定义自己的加法和数乘。这往往不是那么直接(能很容易建立的线性运算结构早已经被建立好并广泛应用了),可能需要涉及 很深的数学知识,并且要有对问题本身的深入了解和数学上的洞察力。不过,一个新的代数结构一旦建立起来,其它的数学结构,包括拓扑,度量,分析,以及内积 结构也随之能被自然地诱导出来,我们也就具有了对这个对象空间进行各种数学运算和操作的基础。加法和数乘看上去简单,但是如果我们对于本来不知道如何进行 加法和数乘的空间建立了这两样东西,其理论上的贡献是非常大的。

              (一个小问题:大家常用各种graphical model,但是,每次这些model都是分别formulate,然后推导出estimation和evaluation的步骤方法。是否可能对"the space of graphical model"或者它的某个特定子集建立某种代数结构呢?(不一定是线性空间,比如群,环,广群, etc)从而使得它们在代数意义上统一起来,而相应的estimation或者evaluation也可以用过代数运算derive。这不是我的研究范围,也超出了我目前的能力和知识水平,只是我相信它在理论上的重要意义,留作一个远景的问题。事实上,数学中确实有一个分支叫做 Algebraic statistics 可能在探讨类似的问题,不过我现在对此了解非常有限。)

              5. 回到我们的正题,除了直接建立运算定义,另外一种方式就是嵌入(embedding)到某个向量空间,从而继承其运算结构为我所用。当然这种嵌入也不是乱来,它需要保持原来这些对象的某种关系。最常见的就是保距嵌入(isometric embedding),我们首先建立度量结构(绕过向量表达,直接对两个对象的距离通过某种方法进行计算),然后把这个空间嵌入到目标空间,通常是有限维向量空间,要求保持度量不变。

              “嵌入”是一种在数学上应用广泛的手段,其主要目标就是通过嵌入到一个属性良好,结构丰富的空间,从而利用其某种结构或者运算体系。在拓扑学中,嵌入到metric space是对某个拓扑空间建立度量的重要手段。而在这里,我们是已有度量的情况下,通过嵌入获取线性运算的结构。除此以来,还有一种就是前些年比较热的manifold embedding,这个是通过保持局部结构的嵌入,获取全局结构,后面还会提到。

              6. 接下来的一个重要的代数结构,就是内积(inner product)结构。内积结构一旦建立,会直接诱导出一种性质良好的度量,就是范数(norm),并且进而诱导出拓扑结构。一般来说,内积需要建立在线性空间的基础上,否则连一个二元运算是否是内积都无法验证。不过,kernel理论指出,对于一个空间,只要定义一个正定核(positive kernel)——一个符合正定条件的二元运算,就必然存在一个希尔伯特空间,其内积运算等效于核运算。这个结论的重要意义在于,我们可以绕开线性空间,通过首先定义kernel的方式,诱导出一个线性空间(叫做再生核希尔伯特空间 Reproducing Kernel Hilbert Space),从而我们就自然获得我们所需要的度量结构和线性运算结构。这是kernel theory的基础。

              在很多教科书中,以二次核为例子,把二维空间变成三维,然后告诉大家kernel用于升维。对于这种说法,我一直认为在一定程度上是误导的。事实上,kernel的最首要意义是内积的建立(或者改造),从而诱导出更利于表达的度量和运算结构。对于一个问题而言,选择一个切合问题的kernel比起关注“升维”来得更为重要。

              kernel被视为非线性化的重要手段,用于处理非高斯的数据分布。这是有道理的。通过nonlinear kernel改造的内积空间,其结构和原空间的结构确实不是线性关联,从这个意义上说,它实施了非线性化。不过,我们还应该明白,它的最终目标还是要回到线性空间,新的内积空间仍旧是一个线性空间,它一旦建立,其后的运算都是线性的,因此,kernel的使用就是为了寻求一个新的线性空间,使得线性运算更加合理——非线性化的改造最终仍旧是要为线性运算服务。

              值得一提的是,kernelization本质上说还是一种嵌入过程:对于一个空间先建立内积结构,并且以保持内积结构不变的方式嵌入到一个高维的线性空间,从而继承其线性运算体系。

              7. 上面说到的都是从全局的方式建立代数结构的过程,但是那必须以某种全局结构为基础(无论预先定义的是运算,度量还是内积,都必须适用于全空间。)但是,全局结构未必存在或者适合,而局部结构往往简单方便得多。这里就形成一种策略,以局部而达全局——这就是流形(manifold)的思想,而其则根源于拓扑学。

              从拓扑学的角度说,流形就是一个非常优良的拓扑空间:符合Hausdorff分离公理(任何不同的两点都可以通过不相交的邻域分离),符合第二可数公理(具有可数的拓扑基),并且更重要的是,局部同胚于R^n。因此,一个正则(Regular)流形基本就具有了各种最良好的拓扑特性。而局部同胚于R^n,代表了它至少在局部上可以继承R^n的各种结构,比如线性运算和内积,从而建立分析体系。事实上,拓扑流形继承这些结构后形成的体系,正是现代流形理论研究的重点。继承了分析体系的流形,就形成了微分流形(Differential manifold),这是现代微分几何的核心。而微分流形各点上的切空间(Tangent Space),则获得了线性运算的体系。而进一步继承了局部内积结构的流形,则形成黎曼流形(Riemann manifold),而流形的全局度量体系——测地距离(geodesics)正是通过对局部度量的延伸来获得。进一步的,当流行本身的拓扑结构和切空间上的线性结构发生关系——也就获得一簇拓扑关联的线性空间——向量丛(Vector bundle)。

              虽然manifold theory作为现代几何学的核心,是一个博大精深的领域,但是它在learning中的应用则显得非常狭窄。事实上,对于manifold,很多做learning的朋友首先反应的是ISOMAP, LLE, eigenmap之类的算法。这些都属于embedding。当然,这确实是流形理论的一个重要方面。严格来说,这要求是从原空间到其映像的微分同胚映射,因此,嵌入后的空间在局部上具有相同的分析结构,同时也获得了各种好处——全局的线性运算和度量。不过,这个概念在learning的应用中被相当程度的放宽了——微分同胚并不能被完全保证,而整个分析结构也不能被完全保持。大家更关注的是保持局部结构中的某个方面——不过这在实际应用中的折衷方案也是可以理解的。事实表明,当原空间中的数据足够密集的情况下,这些算法工作良好。

              Learning中流形应用的真正问题在于它被过滥地运用于稀疏空间(Sparse space),事实上在高维空间中撒进去几千乃至几十万点,即使最相邻的几点也难称为局部了,局部的范围和全局的范围其实已经没有了根本差别,连局部的概念都立不住脚的时候,后面基于其展开的一切工作也都没有太大的意义。事实上,稀疏空间有其本身的规律和法则,通过局部形成全局的流形思想从本质上是不适合于此的。虽然,流形是一种非常美的理论,但是再漂亮的理论也需要用得其所——它应该用于解决具有密集数据分布的低维空间。至于,一些paper所报告的在高维空间(比如人脸)运用流形方法获得性能提升,其实未必是因为“流形”本身所起的作用,而很可能是其它方面的因素。

              8. 流形在实际应用中起重要作用的还有两个方面:一个是研究几何形体的性质(我们暂且不谈这个),还有就是它和代数结构的结合形成的李群(Lie group)和李代数(Lie algebra)。当我们研究的对象是变换本身的时候,它们构成的空间是有其特殊性的,比如所有子空间投影形成了Grassmann流形,所有的可逆线性算子,或者仿射算子,也形成各自的流形。对他们的最重要操作是变换的结合,而不是加法数乘,因此,它们上面定义的更合适的代数结构应该是群和不是线性空间。而群和微分流形的结合体——李群则成为它们最合适的描述体系——而其切空间则构成了一种加强的线性空间:李代数,用于描述其局部变化特性。

              李代数和李群的关系是非常漂亮的。它把变换的微变化转换成了线性空间的代数运算,使得移植传统的基于线性空间的模型和算法到李空间变得可能。而且李代数中的矩阵比起变换本身的矩阵甚至更能反映变换的特性。几何变换的李代数矩阵的谱结构就能非常方便地用于分析变换的几何特性。

              最后,回头总结一下关于嵌入这个应用广泛的策略,在learning中的isometry, kernel和manifold embedding都属于此范畴,它们分别通过保持原空间的度量结构,内积结构和局部结构来获得到目标(通常是向量空间)的嵌入,从而获得全局的坐标表达,线性运算和度量,进而能被各种线性算法和模型所应用。

              在获得这一系列好处的同时,也有值得我们注意的地方。首先,嵌入只是一种数学手段,并不能取代对问题本身的研究和分析。一种不恰当的原始结构或者嵌入策略,很多时候甚至适得其反——比如稀疏空间的流形嵌入,或者选取不恰当的kernel。另外,嵌入适合于分析,而未必适合于重建或者合成。这是因为嵌入是一个单射(injection),目标空间不是每一个点都和原空间能有效对应的。嵌入之后的运算往往就打破了原空间施加的限制。比如两个元素即使都是从原空间映射过来,它们的和却未必有原像,这时就不能直接地回到原空间了。当然可以考虑在原空间找一个点它的映射与之最近,不过这在实际中的有效性是值得商榷的。

              和Learning有关的数学世界是非常广博的,我随着学习和研究的深入,越来越发现在一些我平常不注意的数学分支中有着适合于问题的结构和方法。比如,广群(groupoid)和广代数(algebroid)能克服李群和李代数在表示连续变换过程中的一些困难——这些困难困扰了我很长时间。解决问题和建立数学模型是相辅相成的,一方面,一个清晰的问题将使我们有明确的目标去寻求合适的数学结构,另一方面,对数学结构的深入理解对于指导问题的解决也是有重要作用的。对于解决一个问题来说,数学工具的选择最重要的是适合,而不是高深,但是如果在现有数学方法陷入困难的时候,寻求更高级别的数学的帮助,往往能柳暗花明。数学家长时间的努力解决的很多问题,并不都是理论游戏,他们的解决方案中很多时候蕴含着我们需要的东西,而且可能导致对更多问题的解决——但是我们需要时间去学习和发现它们。

              拓扑:游走于直观与抽象之间

              近日来,抽空再读了一遍点集拓扑(Point Set Topology),这是我第三次重新学习这个理论了。我看电视剧和小说,极少能有兴致看第二遍,但是,对于数学,每看一次都有新的启发和收获。

              代数,分析,和拓扑,被称为是现代数学的三大柱石。最初读拓扑,是在两三年前,由于学习流形理论的需要。可是,随着知识的积累,发现它是很多理论的根基。可以说,没有拓扑,就没有现代意义的分析与几何。我们在各种数学分支中接触到的最基本的概念,比如,极限,连续,距离(度量),边界,路径,在现代数学中,都源于拓扑。

              拓扑学是一门非常奇妙的学科,它把最直观的现象和最抽象的概念联系在一起了。拓扑描述的是普遍使用的概念(比如开集,闭集,连续),我们对这些概念习以为常,理所当然地使用着,可是,真要定义它,则需要对它们本质的最深刻的洞察。数学家们经过长时间的努力,得到了这些概念的现代定义。这里面很多第一眼看上去,会感觉惊奇——怎么会定义成这个样子。

              首先是开集。在学习初等数学时,我们都学习开区间 (a, b)。可是,这只是在一条线上的,怎么推广到二维空间,或者更高维空间,或者别的形体上呢?最直观的想法,就是“一个不包含边界的集合”。可是,问题来了,给一个集合,何谓“边界”?在拓扑学里面,开集(Open Set)是最根本的概念,它是定义在集合运算的基础上的。它要求开集符合这样的条件:开集的任意并集和有限交集仍为开集。

              我最初的时候,对于这样的定义方式,确实百思不解。不过,读下去,看了和做了很多证明后,发现,这样的定义一个很重要的意义在于:它保证了开集中每个点都有一个邻域包含在这个集合内——所有点都和外界(补集)保持距离。这样的理解应该比使用集合运算的定义有更明晰的几何意义。但是,直观的东西不容易直接形成严谨的定义,使用集合运算则更为严格。而集合运算定义中,任意并集的封闭性是对这个几何特点的内在保证。

              另外一个例子就是“连续函数”(Continuous Function)。在学微积分时,一个耳熟能详的定义是“对任意的epsilon > 0,存在delta > 0,使得。。。。”,背后最直观的意思就是“足够近的点保证映射到任意小的范围内”。可是,epsilon, delta都依赖于实空间,不在实空间的映射又怎么办呢?拓扑的定义是“如果一个映射的值域中任何开集的原象都是开集,那么它连续。”这里就没有epsilon什么事了。“开集的原象是开集”

              这里的关键在于,在拓扑学中,开集的最重要意义就是要传递“邻域”的意思——开集本身就是所含点的邻域。这样连续定义成这样就顺理成章了。稍微把说法调节一下,上面的定义就变成了“对于f(x)的任意邻域U,都有x的一个邻域V,使得V里面的点都映射到U中。”

              这里面,我们可以感受到为什么开集在拓扑学中有根本性的意义。既然开集传达“邻域”的意思,那么,它最重要的作用就是要表达哪些点靠得比较近。给出一个拓扑结构,就是要指出哪些是开集,从而指出哪些点靠得比较近,这样就形成了一个聚集结构——这就是拓扑。

              可是这也可以通过距离来描述,为什么要用开集呢,反而不直观了。某种意义上说,拓扑是“定性”的,距离度量是“定量”的。随着连续变形,距离会不断变化,但是靠近的点还是靠近,因此本身固有的拓扑特性不会改变。拓扑学研究的就是这种本质特性——连续变化中的不变性。

              在拓扑的基本概念中,最令人费解的,莫过于“紧性”(Compactness)。它描述一个空间或者一个集合“紧不紧”。正式的定义是“如果一个集合的任意开覆盖都有有限子覆盖,那么它是紧的”。乍一看,实在有点莫名其妙。它究竟想描述一个什么东西呢?和“紧”这个形容词又怎么扯上关系呢?

              一个直观一点的理解,几个集合是“紧”的,就是说,无限个点撒进去,不可能充分散开。无论邻域多么小,必然有一些邻域里面有无限个点。上面关于compactness的这个定义的玄机就在有限和无限的转换中。一个紧的集合,被无限多的小邻域覆盖着,但是,总能找到其中的有限个就能盖全。那么,后果是什么呢?无限个点撒进去,总有一个邻域包着无数个点。邻域们再怎么小都是这样——这就保证了无限序列中存在极限点。

              Compact这个概念虽然有点不那么直观,可是在分析中有着无比重要的作用。因为它关系到极限的存在性——这是数学分析的基础。了解泛函分析的朋友都知道,序列是否收敛,很多时候就看它了。微积分中,一个重要的定理——有界数列必然包含收敛子列,就是根源于此。

              在学习拓扑,或者其它现代数学理论之前,我们的数学一直都在有限维欧氏空间之中,那是一个完美的世界,具有一切良好的属性,Hausdorff, Locally compact, Simply connected,Completed,还有一套线性代数结构,还有良好定义的度量,范数,与内积。可是,随着研究的加深,终究还是要走出这个圈子。这个时候,本来理所当然的东西,变得不那么必然了。

              · 两个点必然能分开?你要证明空间是Hausdorff的。

              · 有界数列必然存在极限点?这只在locally compact的空间如此。

              · 一个连续体内任意两点必然有路径连接?这可未必。

              一切看上去有悖常理,而又确实存在。从线性代数到一般的群,从有限维到无限维,从度量空间到拓扑空间,整个认识都需要重新清理。而且,这些绝非仅是数学家的概念游戏,因为我们的世界不是有限维向量能充分表达的。当我们研究一些不是向量能表达的东西的时候,度量,代数,以及分析的概念,都要重新建立,而起点就在拓扑。

              -----------------------------------------------------------------------------------------------------------------------------------

        • 家园 "码分多址(CDMA)的本质-正交之美"

          1.

          If I had an AI who is programmed (easily, I would think)

          in "h-space", and knows what is "正交", then all I need to do is to tell AI: go and get a 科普正交, in chinese, piece of cake?

          OK, I don't have that AI, then, I stop things at hand and do it myself, or tell possibly a non-"正交" person who has to know chinese, not an issue, but does she or he knows "正交" good enough to get a fairly good 科普 level one ?

          what is the cost of an AI vs having such a 正交or non-正交 person on your payroll?

          2.

          http://www.ccthere.com/alist/3808130

          Moravec的悖论10 Fuhrer 字3601 2013-01-25 19:08:59

          "事实上,解决一些最困难的工程问题,你的...作为新一代的智能设备的出现,这将是股票分析师和石油化工工程师和假释委员会成员被机器所取代的危险。的园丁,接待和厨师在他们的工作是安全的,几十年来“。马文·明斯基强调,最困难的人的技能进行逆向工程,是无意识的"

          comment: may be chinese as a surviving art/language is good on those "无意识的逆向工程", 與人鬥其樂無窮 type of stuff?

          3.

          -------------quoted------------

          http://blog.csdn.net/dog250/article/details/6420427

          码分多址(CDMA)的本质-正交之美

          .

          2011-05-14 22:262065人阅读评论(2)收藏举报

          引子:

          CDMA是个很重要的通信概念,很多的大学教科书上都会提到它,甚至我们今天可能都在使用它。然而提到cdma,很少有资料提到它的思想是多么的有创意,教科书上关于cdma的章节都过于复杂,过于数学化,虽然也有一些简便的描述方式,但是却几乎没有资料揭示cdma是多么的简单,实际上它比其他很多的概念都要更简单。

          如果仅仅希望理解诸如cdma的概念而不得不去学习一大堆数学是很悲哀的事情! 如果最终你费了九牛二虎之力把数学推理过程搞明白了,你对数学本身的理解将超过你对cdma的理解,本来数学仅仅是为了帮忙理解cdma,可是最终却反客为主了。我认为理解一个概念最好不要从数学开始,数学化的东西只是一个总结,一种表述方式罢了,正如音乐的实质不在五线谱原理和简谱助记法而在旋律本身一样,我敢肯定任何科学理论的提出都不是从数学开始的,但是却总是归于数学,正如任何伟大的音乐作品只从音乐本身开始,伟大的美术作品的作者不需要事先研究配色原理一样。记住,数学只是工具!

          一.开始吧,从吉普赛纸牌开始

          小的时候,我们都玩过吉普赛纸牌,用来算自己某天会不会有“桃花运”,这种纸牌算出来的桃花运像魔咒一样,使腼腆的你对你喜欢的小女孩说“我喜欢你”(我就这么玩过,结果很尴尬...),不知道为什么这种游戏现在没有人玩了。表面上每张牌上写满了乱七八糟的文字,如下图:

          然而当你用一张挖有小洞的纸牌罩在写满字的纸牌上的时候,你会发现上面写着一句话,如下所示:

          这种游戏也许和我们现在玩的《愤怒的小鸟》之类的相比有点傻,然而它确实是一个古老的游戏,本文的目的不是为了揭示游戏原理,而是它有助于我们理解cdma。

          我们把写满文件的纸牌看做是“仅有一个有效信号,其它对于接收者来讲全是噪音”的叠加信号,而挖有小洞的纸牌就是分配给每一个人的“码”,每一个“码”都不同,因此当用这些码罩到叠加信号上时,能显示出的只是我们感兴趣的信息,比如“你有桃花运”。就这么简单,所有的信号尽管发过来好了,我不怕干扰,因为我用我的“码”可以解出发给我的信息。

          显然,如果一张牌上能写100个字,每句有意义的话有5个字,那么我们就可以设计出20张挖有小洞的纸牌作为“码”,每张纸牌上有5个洞,能通透5个字。如果没有“码”,100个字看起来就是乱码,因此这种方式还起到了一定的信息加密的作用。20个码分给20个人,就可以通信了,在和对方交换信息前,先用对方的码把信息填到相应的位置,对方收到后就自己的码往纸牌上一罩,结果就出来。

          所谓的码分多址最终就归于一副吉普赛纸牌上。很简单吧

          二.好吧,再看看别的例子

          除了吉普赛纸牌,其实我们每天都在接触码分多址:

          1.大学刚开学的时候,军训时,在火车上,飞机上,大家聊天时,你能一耳朵听出谁是你的老乡,因为有时候别人使用的方言你根本听不懂,也就是说你没有理解那种语言的“码”,我们的大脑中天生拥有一种过滤母语或者方言的“码”!

          2.长途旅行中,你很困,旁边的两个家伙叽叽喳喳说个不停,如果他们使用你听不懂的语言,你照样能睡着,但是如果他们说的是普通话,那你就完蛋了,那就忍耐吧

          三.该我们自己设计了

          大自然已经设计了我们的大脑这种高度复杂的“码分多址设备”,我们当然使用这个设备也能造出一个克隆体,如果我们就是上帝,那么我们希望造出和我们一样的东西,因此码分多址技术是必然要出现的,如果你不承认它是一种创意,起码它也是我们自身的印照!

          通过吉普赛纸牌,我们发现,码分多址的要点在于诸多的“码”本身是不能互相干扰的“掩码”,它有两个特点:

          一是码之间两两不能互相干扰(因为不能在纸牌的一个位置写下两个不同的字);

          二就是它们是掩码,所谓的掩码就是将不需要的信息“掩去”。

          这就是要点,我们只要能设计出类似的编码规则就可以了,这难道很难吗?

          理解了上述的“码”的两个基本特征之后,接下来再考虑数学实现也不迟,我当然还是试图不使用数学,期望在全文中不提什么“沃尔什函数”,“正交”,“卷积”之类的概念,可是我觉得还是有必要阐述一下,因为第一,正交的概念真是太美了,一下子就把上述两个特征都实现了;第二,不使用那些复杂的推导过程也能理解上述的数学概念,没有学过微积分和矩阵原理也没有问题。

          四.为什么需要数学

          任何领域几乎都需要数学,数学确实是一个好东西,它不仅仅是一种工具,它还是一种大脑训练操。因为它足够抽象 ,能够很方便的建模,使各领域的设计师将精力集中在该领域本身,纯逻辑和纯理论抽象的部分交给数学来解决,由于现代数学是建立在一整套很严密的逻辑的基础上的,因此它的结论一般不容置疑(当然不要考虑哥德尔考虑的问题,那是数学家和逻辑学家的工作),而且在数学推理过程中,可以排除特定领域的概念干扰,比如在基于牛顿第二定律计算运动物体速度时,可以排除接触面粗糙程序,阻尼等物理概念。数学完全符合高内聚低耦合的特征, 因此虽然数学看起来很令人讨厌,然而当你熟悉了它之后,它真的很有趣!能使我一心一意工作的诱惑有两个,一个是加薪,另一个就是数学,真的是这样(虽然平时不怎么使用数学,然而数学带来的不是知识本身,不是会背几个公式知道几个名词,值得享受的是思考的过程和从中总结出的“道”)。

          然而切记,只有两种情况下使用数学,一种是你在体验数学本身,二是你使用它描述或者解决问题,并且此时你已经彻底理解了问题的本质。(有些顶级草根黑客认为代码需要想到及写出,然后慢慢修改调试,正如画油画一样,而大部分公司的经理却厌恶这种论调,他们总希望你在编码之前先提交一堆文档,然后等到最后再用最短的时间编码,这也许就是艺术和技术的区别吧?)

          五.先从最简单的情况看起

          如果问一个初中生,力是如何合成的,如何分解的,他会马上说出矢量,正交,坐标系,cos,sin等概念,既然初中生都明白力是怎么合成的,那么咱们作为一群大学都毕了业好几年的家伙,怎能不知呢?你如果否定,那既然你知道力是如何合成和分解的,怎么就不能理解码分多址呢?

          考虑最简单的只有两个码的码分多址中,叠加的信号就是一个两个个力的合力矢量,而特定用户解出的属于自己的信息就是该合力在一个坐标轴上的分力,他们使用的“码”就是坐标轴上的单位矢量,且坐标轴是正交的(相互垂直的笛卡尔坐标系)。如下图:

          很简单吧,实际上也真是这么简单。回忆吉普赛纸牌,是不是很一致呢,我们可以设纸牌上可以写20个字,一个作为码的纸牌上可以挖10个洞,只要两张挖洞纸牌上的洞的位置不重合,那么可以认为这两张挖洞纸牌就是正交的。第二个特征是掩码,实际上可以通过正交推理出来,因为正交概念本身就是井水不犯河水的关系,顺着笛卡尔坐标系的x轴向原点望去,你只能看到y轴,而看不到x轴,反过来沿着y轴向原点看,你也只能看到x轴,是不是掩码的意思呢?一个正交的概念解决了两个问题。如下图:

          以合力解释这个叠加信息的编码是很容易理解的,合力仅仅是实际力的合成,是实际力-垂直力和水平力的承载体,以力的效果来说明它们互相不干扰就是:水平力不会造成物理在垂直方向有位移,垂直力也不会造成物体在水平方向有位移,应用在信息上,用户A使用码X编码的信息i1和用户B使用码Y编码的信息i2最终叠加成了I,也就是合力,然而某一用户如果使用码X将信息I分解,它得到的将是i1,对i2丝毫没有影响,为什么呢?因为码X和码Y是正交的,正如上述的X轴和Y轴正交一样。

          六.稍微扩展一点正交,没想到,就这样结束了

          归纳能力是人类特有的能力,有趣的是,人们归纳曾经发生的过事的目的恰恰是为了预测未来的事。 笛卡尔坐标系是欧几里得空间的正交系,它可以解决和解释大量的问题,然而直到17世纪,数学仍然没有作为一个独立的学科发挥巨大的作用,原因正是到那时为止,数学太形象化了,直到微积分和希尔伯特空间被提出来,数学才从具体的学科中被抽出来,专门向更抽象和逻辑性更强的方向发展。 这种发展最终反过来影响着具体的学科,受其影响最大的学科就是物理学和信息学了。

          如果大家理解了上述的枝枝蔓蔓,此时就可以一头扎进数学了,但是注意,千万不要恋战,点到为止,再次重申,数学只是工具,除非你想专门研究它!

          既然二维的笛卡尔正交系可以抽出两个正交量从而形成两个所谓的“码”,那么如果有一个正交系有N个正交量,那么不就是说有N个“码”了吗 ?是的,确实正确!并且这样的正交系是存在的,数学作为工具在此发挥了作用。

          要讲述正交的概念,很多教科书本着先导出概念的原则先讲述了向量,然后讲述了内积之类的概念,最终告诉你内积为0的两个向量是正交的,当你得到这个答案的时候,你可能已经被内积以及之前的概念搞糊涂了,或者已经厌烦了,已经忘记了当初为何需要知道什么是正交,以及需要正交的哪些性质,因此这种教育方式对于喜欢科学探索的家伙来讲无疑是毒药!什么是正交呢?简单点说两个正交量肯定是相交的,也就是有联系的,但是这种联系很“正”, 也就是除了在交点发生关系之外,其它哪里都不发生关系,只要满足这两点都是正交的量,对于二维空间,直角坐标系的x轴和y轴在原点相交,它们又彼此垂直,彼此在对方没有任何分量,因此它们正交。对于超过3个的多个量,只要满足“相关联”,“关系很正”这两个性质都属于正交量,因此理解了这一步,我们看看数学语言是如何描述它的,对于连续量,使用积分来描述,对于离散量来讲,就更简单了,如果我们设空间有M个分量,那么一个向量将表示为:

          这就是多维空间的正交向量,就这么简单。如果我们把这样的向量作为“码”分给每一个用户,那么用户用这个向量码和自己的标量信息做一个算术乘法,作为结果Rn,Rn显然也是一个多维向量,然后所有的用户的这些Rn加在一起:R1+R2+...Rm,最终形成一个M维空间的向量,这就相当于一个合力,信息到达接收端后,用户只需要将“合力”分解到自己的“码”上就可以了,注意,为了使运算简单,最好使用单位向量作为码。

          六.构造多维正交向量

          原理就是这么简单,可是我们怎么去构造这么一组向量满足式子(1)然后从而分配给用户呢?如果你独自思考问题到了这个地步,接下来你要干什么你自己就很明了了,如果你觉得你是个天才,你就去自己去想个办法,如果你觉得你只是想弄明白cdma的原理或者在搞一个新的编码或者别的,那么你肯定去阅读相关的数学资料了。看到了吗?我们第二次使用数学,前一次搞明白了希尔伯特空间向量,这次我们需要搞到一个简单的,且能得到多个正交的向量的方法,是什么呢?哎,最终还是要提到沃尔什函数,Ahha!

          还是我的老原则,那就是先看效果,然后反思,或者说试图从一个巨人的脚后跟往上爬,最终爬到另一个巨人的肩膀!好了,先看一眼沃尔什向量长什么样子吧:

          【和大多数教科书一样,我将“1”换成了“+”,将“-1”换成了“-”,沃尔什矩阵中只有“1”和“-1”】

          不管怎样,先不管它的原理,看看任意两行或者任意两列,显然是正交的,完全符合需求,然后,和那个力的合成和分解一样,就算就可以了,超级简单,在理解原理前,我们先看看如何进行cdma的核心编码,当我们发现其简单性之后,再来考虑原理,最终我们会为这一切配合的如此完美而叹为观止!

          七.沃尔什编码的简单性使得CDMA大有前途

          沃尔什矩阵如何编码数据呢?我们知道数据都是0和1组成的,这就更好办了。首先为每一个用户分配一个N阶沃尔什矩阵中的一行或者一列(要么全是行要么全是列),将数据的0,1序列和向量相乘,这是纯粹是标量和向量的乘法,乘以分量即可,...(当然事实上没有这么简单,编码问题什么时候都是很复杂的,然而本文主要帮助大家理解cdma的本质,而不是研究如何编码)。我以一个实例结束核心讨论:

          1.用户1的码:a1=(-1 -1 -1 -1 1 1 1 1)--第2行

          2.用户2的码:a2=(-1 1 -1 1 1 -1 1 -1)--第7行

          3.用户1的数据:d1=110

          4.用户2的数据:d2=010

          下面开始编码过程,假设发给用户1和用户2的数据叠加在一起,用户1的数据最终成为:

          (-1 -1 -1 -1 1 1 1 1)|(-1 -1 -1 -1 1 1 1 1)|(0 0 0 0 0 0 0 0) 【前面的|隔开的是用户1的三位数据编码后的结果,每一位用户数据都是标量,和码相乘,结果还是向量】;用户2的数据最终为:

          (0 0 0 0 0 0 0 0)|(-1 1 -1 1 1 -1 1 -1)|(0 0 0 0 0 0 0 0) ,二者叠加后为:

          (-1 -1 -1 -1 1 1 1 1)|(-1 -1 -1 -1 1 1 1 1)|(0 0 0 0 0 0 0 0)

          (0 0 0 0 0 0 0 0)|(-1 1 -1 1 1 -1 1 -1)|(0 0 0 0 0 0 0 0)

          _______________________________________________________________

          (-1 -1 -1 -1 1 1 1 1)|(-2 0 -2 0 2 0 2 0)|(0 0 0 0 0 0 0 0)

          最终结果是:

          (-1 -1 -1 -1 1 1 1 1)|(-2 0 -2 0 2 0 2 0)|(0 0 0 0 0 0 0 0)

          这个叠加的数据同时到达用户1和用户2,用户1解码的过程实际上是一个“力的分解”过程,如果是二维的情况,如果我们知道有一个“合力”是(a b),那么要求在x轴上的投影向量,我们该怎么办?其实我们不必求投影向量,只求投影的长度即可,毕竟被编码的数据是标量啊!这就更简单了,随便问一个初中生估计能得到最简单的答案。答案就是:L乘以夹角的余弦值!

          然而对于多维向量而言,L是不易的,因为多维向量不好用【勾股定理】 (我更喜欢用毕达哥拉斯定理这个词)。那么怎么办呢?向量的事最好由向量自己解决,记住,有很多我们中学时学习到的定理或者公式都是不适合高维空间的,毕竟那是古人经验(计算车轮子的长度,计算横梁)或者纯思辨哲学(苏格拉底,柏拉图,亚里士多德的时代)的成果,那时数学还没有抽象到希尔伯特时代的程度,因此我们还是用现代的方法吧!现代的方法为:

          所以忘掉中学时的知识吧。如果我不进一步说明上述的公式是怎样导出的,我还是落入了俗套,因此,我给出简单的推导,哪怕是一点指点迷津的思路也行:

          起初数据为k,然后和数据r一起被编码并且叠加在一起,最终又恢复了k,一切使用的都是矩阵的加法和乘法运算,最幸运的是,这些运算都是很简单的。

          CDMA的本质理解了吗?实际上,这种方式如此简单的解决了码分多址编码问题,使用了这种方式之后,可以巧妙绕开那些相对复杂的变换或者逼近,比如傅里叶变换和离散余弦变换,因为再也不需要那种方式了,使用CDMA的方式可以使得频谱越宽越有效,而且再也不用靠增加功率来传输信号啦,扩频通信由来于此!

          那么沃尔什矩阵究竟是怎么来的呢?可能是沃尔什本人靠他天才的大脑想出来的,也可能...最重要的是,如果理解了哈达玛矩阵的话,理解沃尔什矩阵就简单多了,因为哈达玛矩阵是沃尔什矩阵的一种表述方式,它的最重要的特征就是其递推性,从低阶的矩阵可以推导出高阶的,而且生成原则很简单,仅凭如此它就比其它的编码方式更具优势,更别说它的码分多址特性了。

          八.凯撒加密和扩展的凯撒加密

          在古代,如果手持一张羊皮纸,上面写着乱七八糟的文字,然后如果有一个人拿着一张打着窟窿眼的羊皮贴到写字的羊皮上之后,就能复原信息,窟窿眼在不同的位置,信息呈现就会有所不同,这是一种数据加密的方式,同时也是一种数据复用的方式,这叫什么呢?其实这就是码分多址 啊!因此码分多址天生就和加密不可分,这种编码方式天生具有安全性,究其深层原因,实质在于“码”本身参与了编码,而码是特定区间内用户唯一的,这个码可以理解成密钥,也可以理解成收发方作为一个整体共享的私钥!

          彻底理解了码分多址的本质之后,发现它的简单性以及优美原来来源于它靠向量本身编码,我们提到向量觉得起码得要二维才行,实际上我们更希望从1开始,想想看,一维数轴上的数字难道不是向量吗?如果我们使用一维的向量来进行编码,实际上就会发现这原来就是扩展的凯撒加密运算。

          什么是凯撒加密呢?简单的说,凯撒加密需要一个10进制的数字k作为密钥,然后初始信息的每一个字母编码为其在字母表中位置加上k的位置处的字母。

          扩展的凯撒加密就是使用一个序列a1,a2,a3,...aM作为密钥,然后将待加密的字母序列中每一个字母bN编码为字母表中其所在位置加上aN的位置处的字母, 是不是和本文开始处的吉普赛纸牌很相似呢?没有挖洞的吉普赛纸牌我们看不懂写满文字的吉普赛纸牌中的信息含义,因此吉普赛纸牌天生就有保密性的特性,且它和凯撒加密法又是如此相似,并且,更简单的一个例子,如果一个吉普赛人在中国大骂,我们十有八九听不懂他们的话,依然会微笑!

      • 家园 概念模糊是个假问题

        首先,是采样失真。一个新的概念被发现,需要用词汇加以定义。这个定义的过程是对客观世界采样的过程,也是下面逻辑思维的基础。

        当我们发现一个新概念,并用一个名字去命名,这是定义过程中的起名字,不是定义的全部,并不是采样,当然更谈不上什么失真。这个名字本身当然不可能表示其全部内涵,不但中文如此,英文也是这样,所有的语言都不例外。比如atom--原子,atom也好,原子也好,无非是两个记号,是一个名字,这些字母或者文字本身只是一个代表,其真正的含义在使用者的脑子里,需要用相当的篇幅才能严格表达出来,无论使用什么语言都是同样。

        一个词语之于其要表达的概念,相当于一本书的书名之于全部内容,说一个名字的概念模糊、采样失真,正如批评一本书的名字模糊、内容失真,无疑是十分荒唐的。

        用计算机打比方的话,一个名字,无论采用什么文字,相当于一个指针,而其内涵相当于被指向的内存。指针本身并不表达其指向的内容,而是指向内容所在的地址。如果一定要拿汉字和拼音文字作比较的话,可以说汉字相当于助记符,比如@DataPtr,而拼音文字则相当于二进制编码,0x1234,显然汉字更好记、好用。

        退一万步说,如果“原”“子”二字算是采样、有失真,那么“a”“t”“o”“m”四个字母又是什么呢,连采样失真都算不上,因为其本身根本不包含任何信息、不表示任何东西。第一次看见“atom”这四个字母的人什么都不知道,也不会理解其任何内在的含义,莫非是“a tom”-一个叫汤姆的人还是一只公猫?要不就是“at om”--@om还是在阿曼?反倒是“原子”二字能从一开始就给出一些正确的提示,有助于概念的理解和记忆。

        打个比方,一个新生儿,叫铁蛋也好,叫春妮也好,这个名字就完全代表了这个孩子,绝不会有人望文生义地把叫铁蛋的孩子认做铁做成的蛋,铁蛋的含义是一个7斤2两的健康男孩,其中没有任何模糊问题。

        另外,关于新概念起名的问题,可以参见这个帖子:diamond:赞同,并补充几个例子

分页树展主题 · 全看首页 上页
/ 102
下页 末页


有趣有益,互惠互利;开阔视野,博采众长。
虚拟的网络,真实的人。天南地北客,相逢皆朋友

Copyright © cchere 西西河